Acta Mathematica

Regularity of Kähler–Ricci flows on Fano manifolds

Gang Tian and Zhenlei Zhang

Full-text: Open access

Abstract

In this paper, we will establish a regularity theory for the Kähler–Ricci flow on Fano n-manifolds with Ricci curvature bounded in Lp-norm for some p>n. Using this regularity theory, we will also solve a long-standing conjecture for dimension 3. As an application, we give a new proof of the Yau–Tian–Donaldson conjecture for Fano 3-manifolds. The results have been announced in [45].

Note

The first author was supported by NSF grants. The second author was supported by a grant of Beijing MCE 11224010007 and NSFC 13210010022.

Article information

Source
Acta Math., Volume 216, Number 1 (2016), 127-176.

Dates
Received: 22 October 2013
First available in Project Euclid: 30 January 2017

Permanent link to this document
https://projecteuclid.org/euclid.acta/1485802469

Digital Object Identifier
doi:10.1007/s11511-016-0137-1

Mathematical Reviews number (MathSciNet)
MR3508220

Zentralblatt MATH identifier
1356.53067

Rights
2016 © Institut Mittag-Leffler

Citation

Tian, Gang; Zhang, Zhenlei. Regularity of Kähler–Ricci flows on Fano manifolds. Acta Math. 216 (2016), no. 1, 127--176. doi:10.1007/s11511-016-0137-1. https://projecteuclid.org/euclid.acta/1485802469


Export citation

References

  • Ache, A. G., On the uniqueness of asymptotic limits of the Ricci flow. Preprint, 2012.
  • Anderson M. T.: Convergence and rigidity of manifolds under Ricci curvature bounds. Invent. Math. 102, 429–445 (1990)
  • Berman, R. J., Boucksom, S., Essydieux, P., Guedj, V. & Zeriahi, A., Kähler–Einstein metrics and the Kähler–Ricci flow on log Fano varieties. Preprint, 2011.
  • Berndtsson B.: A Brunn–Minkowski type inequality for Fano manifolds and some uniqueness theorems in Kähler geometry. Invent. Math. 200, 149–200 (2015)
  • Besse, A. L., Einstein Manifolds. Ergebnisse der Mathematik und ihrer Grenzgebiete, 10. Springer, Berlin–Heidelberg, 1987.
  • Cao H. D.: Deformation of Kähler metrics to Kähler–Einstein metrics on compact Kähler manifolds. Invent. Math. 81, 359–372 (1985)
  • Cheeger J.: Integral bounds on curvature elliptic estimates and rectifiability of singular sets. Geom. Funct. Anal. 13, 20–72 (2003)
  • Cheeger J., Colding T. H.: Lower bounds on Ricci curvature and the almost rigidity of warped products. Ann. of Math. 144, 189–237 (1996)
  • Cheeger J., Colding T. H.: On the structure of spaces with Ricci curvature bounded below. I. J. Differential Geom. 46, 406–480 (1997)
  • Cheeger J., Colding T. H.: On the structure of spaces with Ricci curvature bounded below. II. J. Differential Geom. 54, 13–35 (2000)
  • Cheeger J., Colding T. H., Tian G.: On the singularities of spaces with bounded Ricci curvature. Geom. Funct. Anal. 12, 873–914 (2002)
  • Cheeger J., Yau S. T.: A lower bound for the heat kernel. Comm. Pure Appl. Math. 34, 465–480 (1981)
  • Chen X., Donaldson S., Sun S.: Kähler–Einstein metrics on Fano manifolds. I: Approximation of metrics with cone singularities. J. Amer. Math. Soc. 28, 183–197 (2015)
  • Chen X., Donaldson S., Sun S.: Kähler–Einstein metrics on Fano manifolds. III: Limits as cone angle approaches 2π and completion of the main proof. J. Amer. Math. Soc. 28, 235–278 (2015)
  • Chen X., Wang B.: Space of Ricci flows I. Comm. Pure Appl. Math. 65, 1399–1457 (2012)
  • Chow, B., Chu, S.-C., Glickenstein, D., Guenther, C., Isenberg, J., Ivey, T., Knopf, D., Lu, P., Luo, F. & Ni, L., The Ricci Flow: Techniques and Applications. Part III. Geometric-Analytic Aspects. Mathematical Surveys and Monographs, 163. Amer. Math. Soc., Providence, RI, 2010.
  • Colding T. H., Naber A.: Sharp Hölder continuity of tangent cones for spaces with a lower Ricci curvature bound and applications. Ann. of Math. 176, 1173–1229 (2012)
  • Dai X., Wei G.: A heat kernel lower bound for integral Ricci curvature. Michigan Math. J. 52, 61–69 (2004)
  • Donaldson S., Sun S.: Gromov–Hausdorff limits of Kähler manifolds and algebraic geometry. Acta Math. 213, 63–106 (2014)
  • Futaki, A., Kähler–Einstein Metrics and Integral Invariants. Lecture Notes in Math., 1314. Springer, Berlin–Heidelberg, 1988.
  • Grigor’yan A.: Gaussian upper bounds for the heat kernel on arbitrary manifolds. J. Differential Geom. 45, 33–52 (1997)
  • Grigor’yan A.: Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds. Bull. Amer. Math. Soc. 36, 135–249 (1999)
  • Mabuchi T.: K-energy maps integrating Futaki invariants. Tohoku Math. J. 38, 575–593 (1986)
  • Paul S. T.: Hyperdiscriminant polytopes, Chow polytopes, and Mabuchi energy asymptotics. Ann. of Math. 175, 255–296 (2012)
  • Paul, S. T., A numerical criterion for K-energy maps of algebraic manifolds. Preprint, 2012.
  • Paul, S. T., Stable pairs and coercive estimates for the Mabuchi functional. Preprint, 2013.
  • Perelman, G., The entropy formula for the Ricci flow and its geometric applications. Preprint, 2002.
  • Petersen, P., Convergence theorems in Riemannian geometry, in Comparison Geometry (Berkeley, CA, 1993–94), Math. Sci. Res. Inst. Publ., 30, pp. 167–202. Cambridge Univ. Press, Cambridge, 1997.
  • Petersen P., Wei G.: Relative volume comparison with integral curvature bounds. Geom. Funct. Anal. 7, 1031–1045 (1997)
  • Petersen P., Wei G.: Analysis and geometry on manifolds with integral Ricci curvature bounds. II. Trans. Amer. Math. Soc. 353, 457–478 (2001)
  • Phong, D. H., Song, J. & Sturm, J., Degeneration of Kähler–Ricci solitons on Fano manifolds. Preprint, 2012.
  • Rothaus O. S.: Logarithmic Sobolev inequalities and the spectrum of Schrödinger operators. J. Funct. Anal. 42, 110–120 (1981)
  • Sesum N.: Convergence of a Kähler–Ricci flow. Math. Res. Lett. 12, 623–632 (2005)
  • Sesum N., Tian G.: Bounding scalar curvature and diameter along the Kähler Ricci flow (after Perelman). J. Inst. Math. Jussieu 7, 575–587 (2008)
  • Shi W.-X.: Ricci deformation of the metric on complete noncompact Riemannian manifolds. J. Differential Geom. 30, 303–394 (1989)
  • Tian G.: On Calabi’s conjecture for complex surfaces with positive first Ch ern class. Invent. Math. 101, 101–172 (1990)
  • Tian, G., Kähler–Einstein metrics on algebraic manifolds, in Proceedings of the International Congress of Mathematicians, Vol. I (Kyoto, 1990), pp. 587–598. Math. Soc. Japan, Tokyo, 1991.
  • Tian G.: Kähler–Einstein metrics with positive scalar curvature. Invent. Math. 130, 1–37 (1997)
  • Tian, G., Canonical Metrics in Kähler Geometry. Lectures in Mathematics ETH Zürich. Birkhäuser, Basel, 2000.
  • Tian, G., Existence of Einstein metrics on Fano manifolds, in Metric and Differential Geometry, Progr. Math., 297, pp. 119–159. Birkhäuser/Springer, Basel, 2012.
  • Tian G.: Partial C0-estimate for Kähler–Einstein metrics. Commun. Math. Stat. 1, 105–113 (2013)
  • Tian G.: K-stability and Kähler–Einstein metrics. Comm. Pure Appl. Math. 68, 1085–1156 (2015)
  • Tian G., Zhang S., Zhang Z., Zhu X.: Perelman’s entropy and Kähler–Ricci flow on a Fano manifold. Trans. Amer. Math. Soc. 365, 6669–6695 (2013)
  • Tian G., Zhang Z.: Degeneration of Kähler–Ricci solitons. Int. Math. Res. Not. IMRN 5, 957–985 (2012)
  • Tian G., Zhang Z.: Regularity of the Kähler–Ricci flow. C. R. Math. Acad. Sci. Paris 351, 635–638 (2013)
  • Tian G., Zhu X.: Convergence of Kähler–Ricci flow. J. Amer. Math. Soc. 20, 675–699 (2007)
  • Tian G.: Convergence of the Kähler–Ricci flow on Fano manifolds. J. Reine Angew. Math. 678, 223–245 (2013)
  • Yang D.: Convergence of Riemannian manifolds with integral bounds on curvature. I. Ann. Sci. École Norm. Sup. 25, 77–105 (1992)
  • Ye R.: The logarithmic Sobolev and Sobolev inequalities along the Ricci flow. Commun. Math. Stat. 3, 1–36 (2015)
  • Zhang, Q. S., A uniform Sobolev inequality under Ricci flow. Int. Math. Res. Not. IMRN, 17 (2007), Art. ID rnm056, 17 pp.
  • Zhang Z.: Kähler Ricci flow on Fano manifolds with vanished Futaki invariants. Math. Res. Lett. 18, 969–982 (2011)