Acta Mathematica

New partially hyperbolic dynamical systems I

Andrey Gogolev, Pedro Ontaneda, and Federico Rodriguez Hertz

Full-text: Open access


We propose a new method for constructing partially hyperbolic diffeomorphisms on closed manifolds. As a demonstration of the method we show that there are simply connected closed manifolds that support partially hyperbolic diffeomorphisms. Laying aside many surgery constructions of 3-dimensional Anosov flows, these are the first new examples of manifolds which admit partially hyperbolic diffeomorphisms in the past forty years.


The first author was partially supported by NSF grant DMS-1266282. The second author was partially supported by NSF grant DMS-1206622. The last author was partially supported by NSF grant DMS-1201326. A. Gogolev would also like to acknowledge the excellent working environment provided by the Institute for Mathematical Sciences at Stony Brook University.

Article information

Acta Math., Volume 215, Number 2 (2015), 363-393.

Received: 21 May 2014
Revised: 20 October 2015
First available in Project Euclid: 30 January 2017

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

2016 © Institut Mittag-Leffler


Gogolev, Andrey; Ontaneda, Pedro; Hertz, Federico Rodriguez. New partially hyperbolic dynamical systems I. Acta Math. 215 (2015), no. 2, 363--393. doi:10.1007/s11511-016-0135-3.

Export citation


  • Anosov, D.V., Geodesic flows on closed Riemannian manifolds of negative curvature. Tr. Mat. Inst. Steklova, 90 (1967), 209 pp. (Russian); English translation in Proc. Steklov Inst. Math., 90 (1967), Amer. Math. Soc., Providence, RI, 1969.
  • Barrett M., Eremenko A.: On the spherical derivative of a rational function. Anal. Math. Phys. 4, 73–81 (2014)
  • Barth, W.P., Hulek, K., Peters, C. A. M. & Van de Ven, A., Compact Complex Surfaces. Ergebnisse der Mathematik und ihrer Grenzgebiete, 4. Springer, Berlin–Heidelberg, 2004.
  • Brin, M. I. & Pesin, Ja. B., Partially hyperbolic dynamical systems. Izv. Akad. Nauk SSSR Ser. Mat., 38 (1974), 170–212 (Russian); English translation in Math. USSR–Izv., 8 (1974), 177–218.
  • Burago D., Ivanov S.: Partially hyperbolic diffeomorphisms of 3-manifolds with abelian fundamental groups. J. Mod. Dyn. 2, 541–580 (2008)
  • Eckmann B.: Über die Homotopiegruppen von Gruppenräumen. Comment. Math. Helv. 14, 234–256 (1942)
  • Farrell, F. T. & Gogolev, A., On bundles that admit fiberwise hyperbolic dynamics. To appear in Math. Ann.
  • Hatcher A.: Algebraic Topology. Cambridge Univ. Press, Cambridge (2002)
  • Hirsch M. W., Pugh C. C., Shub M.: Invariant manifolds. Bull. Amer. Math. Soc. 76, 1015–1019 (1970)
  • Hirsch, M. W., Pugh, C. C. & Shub, M., Invariant Manifolds. Lecture Notes in Math., 583. Springer, Berlin–Heidelberg, 1977.
  • Hofmann, K. H. & Morris, S. A., The Structure of Compact Groups. de Gruyter Studies in Mathematics, 25. de Gruyter, 2013.
  • Husemoller, D., Fibre Bundles. Graduate Texts in Mathematics, 20. Springer, New York, 1994.
  • Mather J. N.: Characterization of Anosov diffeomorphisms. Nederl. Akad. Wetensch. Proc. Ser. A 30, 479–483 (1968)
  • Milnor J.: Dynamics in One Complex Variable. Vieweg, Braunschweig (1999)
  • Ornstein D.: Factors of Bernoulli shifts are Bernoulli shifts. Adv. Math., 5, 349–364 (1970)
  • Pugh C., Shub M.: Stable ergodicity. Bull. Amer. Math. Soc., 41, 1–41 (2004)
  • Rodriguez Hertz, F., Rodriguez Hertz, M. A. & Ures, R., A survey of partially hyperbolic dynamics, in Partially Hyperbolic Dynamics, Laminations, and Teichmüller Flow (Toronto, ON, 2006), Fields Inst. Commun., 51, pp. 35–87. Amer. Math. Soc., Providence, RI, 2007.
  • Sacksteder, R., Strongly mixing transformations, in Global Analysis (Berkeley, CA, 1968), pp. 245–252. Amer. Math. Soc., Providence, RI, 1970.
  • Scorpan, A., The Wild World of 4-Manifolds. Amer. Math. Soc., Providence, RI, 2005.
  • Whitehead G. W.: Homotopy properties of the real orthogonal groups. Ann. of Math., 43, 132–146 (1942)