Acta Mathematica

Unique Cartan decomposition for II1 factors arising from arbitrary actions of free groups

Sorin Popa and Stefaan Vaes

Full-text: Open access

Abstract

We prove that for any free ergodic probability measure-preserving action Fn(X,μ) of a free group on n generators Fn,2n, the associated group measure space II1 factor L(X)Fn has L(X) as its unique Cartan subalgebra, up to unitary conjugacy. We deduce that group measure space II1 factors arising from actions of free groups with different number of generators are never isomorphic. We actually prove unique Cartan decomposition results for II1 factors arising from arbitrary actions of a much larger family of groups, including all free products of amenable groups and their direct products.

Note

S.P. was supported in part by NSF Grant DMS-1101718. S.V. was supported by ERC Starting Grant VNALG-200749, Research Programme G.0639.11 of the Research Foundation – Flanders (FWO) and KU Leuven BOF research grant OT/08/032.

Article information

Source
Acta Math., Volume 212, Number 1 (2014), 141-198.

Dates
Received: 13 June 2012
First available in Project Euclid: 30 January 2017

Permanent link to this document
https://projecteuclid.org/euclid.acta/1485801727

Digital Object Identifier
doi:10.1007/s11511-014-0110-9

Mathematical Reviews number (MathSciNet)
MR3179609

Zentralblatt MATH identifier
1307.46047

Rights
2014 © Institut Mittag-Leffler

Citation

Popa, Sorin; Vaes, Stefaan. Unique Cartan decomposition for II 1 factors arising from arbitrary actions of free groups. Acta Math. 212 (2014), no. 1, 141--198. doi:10.1007/s11511-014-0110-9. https://projecteuclid.org/euclid.acta/1485801727


Export citation

References

  • Anantharaman-Delaroche C.: Amenable correspondences and approximation properties for von Neumann algebras. Pacific J. Math. 171, 309–341 (1995)
  • Bekka M.E.B.: Amenable unitary representations of locally compact groups. Invent. Math. 100, 383–401 (1990)
  • Bowen, L., Orbit equivalence, coinduced actions and free products. Groups Geom. Dyn., 5 (2011), 1–15.
  • Bowen L.: Stable orbit equivalence of Bernoulli shifts over free groups. Groups Geom. Dyn. 5, 17–38 (2011)
  • Brown N.P.& Ozawa N., C*-Algebras and Finite-Dimensional Approximations. Graduate Studies in Mathematics, 88. Amer. Math. Soc., Providence, RI, 2008.
  • Cheeger J., Gromov M.: L2-cohomology and group cohomology. Topology 25, 189–215 (1986)
  • Chifan I., Peterson J.: Some unique group-measure space decomposition results. Duke Math. J. 162, 1923–1966 (2013)
  • Chifan I., Sinclair T.: On the structural theory of II1 factors of negatively curved groups. Ann. Sci. Éc. Norm. Supér. 46, 1–33 (2013)
  • Chifan I., Sinclair T., Udrea B.: On the structural theory of II1 factors of negatively curved groups, II: Actions by product groups. Adv. Math. 245, 208–236 (2013)
  • Connes A., Classification of injective factors. Cases II1, II, IIIλ, λ ≠ 1. Ann. of Math., 104 (1976), 73–115.
  • Connes, A., Feldman, J. & Weiss, B., An amenable equivalence relation is generated by a single transformation. Ergodic Theory Dynam. Systems, 1 (1981), 431–450 (1982).
  • Connes A., Jones V.: A II1 factor with two nonconjugate Cartan subalgebras. Bull. Amer. Math. Soc. 6, 211–212 (1982)
  • Cowling M., Haagerup U.: Completely bounded multipliers of the Fourier algebra of a simple Lie group of real rank one. Invent. Math. 96, 507–549 (1989)
  • Feldman, J. & Moore, C.C., Ergodic equivalence relations, cohomology, and von Neumann algebras. I, II. Trans. Amer. Math. Soc., 234 (1977), 289–324, 325–359.
  • Furman A.: Orbit equivalence rigidity. Ann. of Math. 150, 1083–1108 (1999)
  • Furman A., On Popa’s cocycle superrigidity theorem. Int. Math. Res. Not. IMRN, 2007 (2007), Art. ID rnm073, 46 pp.
  • Gaboriau D.: Coût des relations d’équivalence et des groupes. Invent. Math. 139, 41–98 (2000)
  • Gaboriau D.: Invariants l2 de relations d’équivalence et de groupes. Publ. Math. Inst. Hautes Études Sci. 95, 93–150 (2002)
  • Haagerup, U., An example of a nonnuclear C*-algebra, which has the metric approximation property. Invent. Math., 50 (1978/79), 279–293.
  • Hjorth G.: A lemma for cost attained. Ann. Pure Appl. Logic 143, 87–102 (2006)
  • Ioana A.: W*-superrigidity for Bernoulli actions of property (T) groups. J. Amer. Math. Soc. 24, 1175–1226 (2011)
  • Ioana A.: Uniqueness of the group measure space decomposition for Popa’s HT factors. Geom. Funct. Anal. 22, 699–732 (2012)
  • Ioana A., Peterson J., Popa S.: Amalgamated free products of weakly rigid factors and calculation of their symmetry groups. Acta Math. 200, 85–153 (2008)
  • Ioana A., Popa S., Vaes S.: A class of superrigid group von Neumann algebras. Ann. of Math. 178, 231–286 (2013)
  • Lück, W., L2-Invariants: Theory and Applications to Geometry and K-Theory. Ergebnisse der Mathematik und ihrer Grenzgebiete, 44. Springer, Berlin–Heidelberg, 2002.
  • Monod N., Popa S.: On co-amenability for groups and von Neumann algebras. C. R. Math. Acad. Sci. Soc. R. Can. 25, 82–87 (2003)
  • Monod N., Shalom Y.: Orbit equivalence rigidity and bounded cohomology. Ann. of Math. 164, 825–878 (2006)
  • Murray F.J., von Neumann J.: On rings of operators. Ann. of Math. 37, 116–229 (1936)
  • Ozawa N.: Solid von Neumann algebras. Acta Math. 192, 111–117 (2004)
  • Ozawa N.: Examples of groups which are not weakly amenable. Kyoto J. Math. 52, 333–344 (2012)
  • Ozawa N., Popa S.: On a class of II1 factors with at most one Cartan subalgebra. Ann. of Math. 172, 713–749 (2010)
  • Ozawa N., Popa S.: On a class of II1 factors with at most one Cartan subalgebra, II. Amer. J. Math. 132, 841–866 (2010)
  • Peterson J.: L2-rigidity in von Neumann algebras. Invent. Math. 175, 417–433 (2009)
  • Peterson J., Examples of group actions which are virtually W*-superrigid. Preprint, 2010.
  • Pimsner M., Popa S.: Entropy and index for subfactors. Ann. Sci. École Norm. Sup. 19, 57–106 (1986)
  • Popa, S., Correspondences. INCREST Preprint, 56, 1986. Available at
  • Popa S.: On a class of type II1 factors with Betti numbers invariants. Ann. of Math. 163, 809–899 (2006)
  • Popa, S., Strong rigidity of II1 factors arising from malleable actions of w-rigid groups. I, II. Invent. Math., 165 (2006), 369–408, 409–451.
  • Popa S.: Cocycle and orbit equivalence superrigidity for malleable actions of w-rigid groups. Invent. Math. 170, 243–295 (2007)
  • Popa S.: On the superrigidity of malleable actions with spectral gap. J. Amer. Math. Soc. 21, 981–1000 (2008)
  • Popa S., Vaes S.: Strong rigidity of generalized Bernoulli actions and computations of their symmetry groups. Adv. Math. 217, 833–872 (2008)
  • Popa S., Vaes S.: Actions of F whose II1 factors and orbit equivalence relations have prescribed fundamental group. J. Amer. Math. Soc. 23, 383–403 (2010)
  • Popa, S., Vaes, S., On the fundamental group of II1 factors and equivalence relations arising from group actions, in Quanta of Maths, Clay Math. Proc., 11, pp. 519–541. Amer. Math. Soc., Providence, RI, 2010.
  • Popa S., Vaes S.: Group measure space decomposition of II1 factors and W*-superrigidity. Invent. Math. 182, 371–417 (2010)
  • Popa, S., Vaes, S., Unique Cartan decomposition for II1 factors arising from arbitrary actions of hyperbolic groups. To appear in J. Reine Angew. Math. Doi:
  • Sinclair, T., Strong solidity of group factors from lattices in SO(n, 1) and SU(n, 1). J. Funct. Anal., 260 (2011), 3209–3221.
  • Takesaki, M., Theory of Operator Algebras. I. Springer, New York, 1979.
  • Takesaki, M., Theory of Operator Algebras. II. Encyclopaedia of Mathematical Sciences, 125. Springer, Berlin–Heidelberg, 2003.
  • Thom A.: Low degree bounded cohomology and L2-invariants for negatively curved groups. Groups Geom. Dyn. 3, 343–358 (2009)
  • Vaes S.: Explicit computations of all finite index bimodules for a family of II1 factors. Ann. Sci. Éc. Norm. Supér. 41, 743–788 (2008)
  • Vaes S.: One-cohomology and the uniqueness of the group measure space decomposition of a II1 factor. Math. Ann. 355, 661–696 (2013)