Advances in Applied Probability

Quantitative estimates for the long-time behavior of an ergodic variant of the telegraph process

Joaquin Fontbona, Hélène Guérin, and Florent Malrieu

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

Motivated by stability questions on piecewise-deterministic Markov models of bacterial chemotaxis, we study the long-time behavior of a variant of the classic telegraph process having a nonconstant jump rate that induces a drift towards the origin. We compute its invariant law and show exponential ergodicity, obtaining a quantitative control of the total variation distance to equilibrium at each instant of time. These results rely on an exact description of the excursions of the process away from the origin and on the explicit construction of an original coalescent coupling for both the velocity and position. Sharpness of the obtained convergence rate is discussed.

Article information

Source
Adv. in Appl. Probab. Volume 44, Number 4 (2012), 977-994.

Dates
First available in Project Euclid: 5 December 2012

Permanent link to this document
https://projecteuclid.org/euclid.aap/1354716586

Digital Object Identifier
doi:10.1239/aap/1354716586

Mathematical Reviews number (MathSciNet)
MR3052846

Zentralblatt MATH identifier
1274.60240

Subjects
Primary: 60J25: Continuous-time Markov processes on general state spaces 60J75: Jump processes 93E15: Stochastic stability 60F17: Functional limit theorems; invariance principles

Keywords
Piecewise-deterministic Markov process coupling long-time behavior telegraph process chemotaxis model

Citation

Fontbona, Joaquin; Guérin, Hélène; Malrieu, Florent. Quantitative estimates for the long-time behavior of an ergodic variant of the telegraph process. Adv. in Appl. Probab. 44 (2012), no. 4, 977--994. doi:10.1239/aap/1354716586. https://projecteuclid.org/euclid.aap/1354716586


Export citation

References

  • Asmussen, S. (2003). Applied Probability and Queues (Appl. Math. 51), 2nd edn. Springer, New York.
  • Bakry, D., Cattiaux, P. and Guillin, A. (2008). Rate of convergence for ergodic continuous Markov processes: Lyapunov versus Poincaré. J. Funct. Anal. 254, 727–759.
  • Costa, O. L. V. and Dufour, F. (2008). Stability and ergodicity of piecewise deterministic Markov processes. SIAM J. Control Optimization 47, 1053–1077.
  • Davis, M. H. A. (1984). Piecewise-deterministic Markov processes: a general class of nondiffusion stochastic models. J. R. Statist. Soc. B 46, 353–388.
  • Dufour, F. and Costa, O. L. V. (1999). Stability of piecewise-deterministic Markov processes. SIAM J. Control Optimization 37, 1483–1502.
  • Erban, R. and Othmer, H. G. (2004/05). From individual to collective behavior in bacterial chemotaxis. SIAM J. Appl. Math. 65, 361–391.
  • Erban, R. and Othmer, H. G. (2005). From signal transduction to spatial pattern formation in E. coli: a paradigm for multiscale modeling in biology. Multiscale Model. Simul. 3, 362–394.
  • Ethier, S. N. and Kurtz, T. G. (1986). Markov Processes. John Wiley, New York.
  • Herrmann, S. and Vallois, P. (2010). From persistent random walk to the telegraph noise. Stoch. Dynamics 10, 161–196.
  • Jacobsen, M. (2006). Point Process Theory and Applications. Birkhäuser, Boston, MA.
  • Kac, M. (1974). A stochastic model related to the telegrapher's equation. Rocky Mountain J. Math. 4, 497–509.
  • Lindvall, T. (1992). Lectures on the Coupling Method. John Wiley, New York.
  • Lund, R. B., Meyn, S. P. and Tweedie, R. L. (1996). Computable exponential convergence rates for stochastically ordered Markov processes. Ann. Appl. Prob. 6, 218–237.
  • Meyn, S. and Tweedie, R. L. (1993). Stability of Markovian processes. III. Foster-Lyapunov criteria for continuous-time processes. Adv. Appl. Prob. 25, 518–548.
  • Meyn, S. and Tweedie, R. L. (2009). Markov Chains and Stochastic Stability, 2nd edn. Cambridge University Press.
  • Norris, J. R. (1997). Markov Chains (Camb. Ser. Statist. Prob. Math. 2). Cambridge University Press.
  • Revuz, D. and Yor, M. (1994). Continuous Martingales and Brownian Motion (Fundamental Principles Math. Sci. 293), 2nd edn. Springer, Berlin.
  • Robert, P. (2003). Stochastic Networks and Queues (Appl. Math. 52). Springer, Berlin.
  • Roberts, G. O. and Rosenthal, J. S. (1996). Quantitative bounds for convergence rates of continuous time Markov processes. Electron. J. Prob. 1, 21pp.
  • Rousset, M. and Samaey, G. (2011). Simulating individual-based models of bacterial chemotaxis with asymptotic variance reduction. Preprint. Available at http://arxiv.org/abs/1111.5321v1.
  • Thorisson, H. (2000). Coupling, Stationarity, and Regeneration. Springer, New York.