Advances in Applied Probability

Fluid limit theorems for stochastic hybrid systems with application to neuron models

K. Pakdaman, M. Thieullen, and G. Wainrib

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


In this paper we establish limit theorems for a class of stochastic hybrid systems (continuous deterministic dynamics coupled with jump Markov processes) in the fluid limit (small jumps at high frequency), thus extending known results for jump Markov processes. We prove a functional law of large numbers with exponential convergence speed, derive a diffusion approximation, and establish a functional central limit theorem. We apply these results to neuron models with stochastic ion channels, as the number of channels goes to infinity, estimating the convergence to the deterministic model. In terms of neural coding, we apply our central limit theorems to numerically estimate the impact of channel noise both on frequency and spike timing coding.

Article information

Adv. in Appl. Probab. Volume 42, Number 3 (2010), 761-794.

First available in Project Euclid: 27 August 2010

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60F05: Central limit and other weak theorems 60F17: Functional limit theorems; invariance principles 60J75: Jump processes
Secondary: 92C20: Neural biology 92C45: Kinetics in biochemical problems (pharmacokinetics, enzyme kinetics, etc.) [See also 80A30]

Stochastic hybrid system piecewise-deterministic Markov process fluid limit Langevin approximation kinetic model neuron model Hodgkin-Huxley Morris-Lecar stochastic ion channels


Pakdaman, K.; Thieullen, M.; Wainrib, G. Fluid limit theorems for stochastic hybrid systems with application to neuron models. Adv. in Appl. Probab. 42 (2010), no. 3, 761--794. doi:10.1239/aap/1282924062.

Export citation


  • Austin, T. D. (2008). The emergence of the deterministic Hodgkin--Huxley equations as a limit from the underlying stochastic ion-channel mechanism. Ann. Appl. Prob. 18, 1279--1325.
  • Blom, H. A. P. and Lygeros, J. (eds) (2006). Stochastic Hybrid Systems (Lecture Notes Control Inf. Sci. 337). Springer.
  • Chicone, C. (1999). Ordinary Differential Equations with Applications. Springer, New York.
  • Cronin, J. (1987). Mathematical Aspects of Hodgkin--Huxley Neural Theory. Cambridge University Press.
  • Darling, R. W. R. and Norris, J. R. (2005). Structure of large random hypergraphs. Ann. Appl. Prob. 15, 125--152.
  • Davis, M. H. A. (1984). Piecewise-deterministic Markov processes: a general class of nondiffusion stochastic models. J. R. Statist. Soc. B 46, 353--388.
  • DeFelice, L. J. and Isaac, A. (1993). Chaotic states in a random world: relationship between the nonlinear differential equations of excitability and the stochastic properties of ion channels. J. Statist. Phys. 70, 339--354.
  • Destexhe, A., Mainen, Z. F. and Sejnowski, T. J. (1994). Synthesis of models for excitable membranes, synaptic transmission and neuromodulation using a common kinetic formalism. J. Comput. Neuroscience 1, 195--230.
  • Ethier, S. N. and Kurtz, T. G. (1986). Markov Processes. John Wiley, New York.
  • Faisal, A. A., Selen, L. P. J. and Wolpert, D. M. (2008). Noise in the nervous system. Nature Rev. Neurosci. 9, 292--303.
  • Fox, R. F. and Lu, Y.-N. (1994). Emergent collective behaviour in large numbers of globally coupled independently stochastic ion channels. Phys. Rev. E 49, 3421--3431.
  • Gollisch, T. and Meister, M. (2008). Rapid neural coding in the retina with relative spike latencies. Science 319, 1108--1111.
  • Guckenheimer, J. and Oliva, R. A. (2002). Chaos in the Hodgkin--Huxley Model. SIAM J. Appl. Dynam. Systems 1, 105--114.
  • Hespanha, J. P. (2005). A model for stochastic hybrid systems with application to communication networks. Nonlinear Anal. 62, 1353--1383.
  • Hodgkin, A. L. and Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiology 117, 500--544.
  • Izhikevich, E. M. (2006). Dynamical Systems in Neuroscience. MIT Press, Cambridge, MA.
  • Josić, K. and Rosenbaum, R. (2008). Unstable solutions of nonautonomous linear differential equations. SIAM Rev. 50, 570--584.
  • Kallenberg, O. (1997). Foundations of Modern Probability. Springer, New York.
  • Keener, J. P. (2009). Invariant manifold reductions for markovian ion channel dynamics. J. Math. Biol. 58, 447--57.
  • Kouretas, P., Koutroumpas, K., Lygeros, J. and Lygerou, Z. (2006). Stochastic hybrid modeling of biochemical processes. In Stochastic Hybrid Systems, CRC Press, Boca Raton, FL, pp. 221--248.
  • Krausz, H. I. and Friesen, W. O. (1977). The analysis of nonlinear synaptic transmission. J. General Physiology 70, 243--265.
  • Kurtz, T. G. (1971). Limit theorems for sequences of jump Markov processes approximating ordinary differential processes. J. Appl Prob. 8, 344--356.
  • Lygeros, J. et al. (2008). Stochastic hybrid modeling of DNA replication across a complete genome. Proc. Nat. Acad. Sci. USA 105, 12295--12300.
  • Mainen, Z. F., Joerges, J., Huguenard, J. R. and Sejnowski, T. J. (1995). A model of spike initiation in neocortical pyramidal neurons. Neuron 15, 1427--1439.
  • Morris, C. and Lecar, H. (1981). Voltage oscillations in the barnacle giant muscle fiber. Biophys. J. 35, 193--213.
  • Pakdaman, K., Thieullen, M. and Wainrib, G. (2010). Diffusion approximation of birth--death processes: comparison in terms of large deviations and exit points. Statist. Prob. Lett. 80, 1121--1127.
  • Pankratova, E. V., Polovinkin, A. V. P. and Mosekilde, E. (2005). Resonant activation in a stochastic Hodgkin--Huxley model: interplay between noise and suprathreshold driving effects. Europ. Phys. J. B 45, 391--397.
  • Protter, P. F. (2004). Stochastic Integration and Differential Equations, 2nd edn. Springer, Berlin.
  • Rinzel, J. and Miller, R. N. (1980). Numerical calculation of stable and unstable periodic solutions to the Hodgkin--Huxley equations. Math. Biosci. 49, 27--59.
  • Rowat, P. (2007). Interspike interval statistics in the stochastic Hodgkin--Huxley model: coexistence of gamma frequency bursts and highly irregular firing. Neural Computation 19, 1215--1250.
  • Segundo, J. P. et al. (1994). Noise and the neurosciences: a long history, a recent revival and some theory. In Origins: Brain and Self Organization, Lawrence Erlbaum, Hillsdale, pp. 299--331.
  • Shuai, J. W. and Jung, P. (2003). Optimal ion channel clustering for intracellular calcium signaling. Proc. Nat. Acad. Sci. USA 100, 506--512.
  • Skaugen, E. and Wallœ, L. (1979). Firing behaviour in a stochastic nerve membrane model based upon the Hodgkin--Huxley equations. Acta Physiology Scand. 107, 343--363.
  • Steinmetz, P. N. et al. (2000). Subthreshold voltage noise due to channel fluctuations in active neuronal membranes. J. Comput. Neurosci. 9, 133--148.
  • Touboul, J. and Faugeras, O. (2008). A characterization of the first hitting time of double integral processes to curved boundaries. Adv. Appl. Prob. 40, 501--528. (Correction: 40 (2009), 309.)
  • Tuckwell, H. C. (1987). Diffusion approximations to channel noise. J. Theoret. Biol. 127, 427--438.
  • Vandenberg, C. A. and Bezanilla, F. (1991). A sodium channel gating model based on single channel, macroscopic ionic, and gating currents in the squid giant axon. Biophys. J. 60, 1511--1533.
  • Van Kampen, N. G. (1981). Stochastic Processes in Physics and Chemistry. North-Holland, Amsterdam.
  • VanRullen, R., Guyonneau, R. and Thorpe, S. J. (2005). Spike times make sense. Trends Neurosci. 28, 1--4.
  • White, J. A., Rubinstein, J. T. and Kay, A. R. (2000). Channel noise in neurons. Trends Neurosci. 23, 131--137.