Advances in Applied Probability

Some distributional results for Poisson-Voronoi tessellations

Volker Baumstark and Günter Last

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


We consider the Voronoi tessellation based on a stationary Poisson process N in ℝd. We provide a complete and explicit description of the Palm distribution describing N as seen from a randomly chosen (typical) point on a k-face of the tessellation. In particular, we compute the joint distribution of the d-k+1 neighbours of the k-face containing the typical point. Using this result as well as a fundamental general relationship between Palm probabilities, we then derive some properties of the typical k-face and its neighbours. Generalizing recent results of Muche (2005), we finally provide the joint distribution of the typical edge (typical 1-face) and its neighbours.

Article information

Adv. in Appl. Probab. Volume 39, Number 1 (2007), 16-40.

First available in Project Euclid: 30 March 2007

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60D05: Geometric probability and stochastic geometry [See also 52A22, 53C65] 60G55: Point processes

Voronoi tessellation Poisson process random measure Palm distribution typical face typical edge


Baumstark, Volker; Last, Günter. Some distributional results for Poisson-Voronoi tessellations. Adv. in Appl. Probab. 39 (2007), no. 1, 16--40. doi:10.1239/aap/1175266467.

Export citation


  • Asmussen, S. (2003). Applied Probability and Queues, 2nd edn. Springer, New York.
  • Kallenberg, O. (2002). Foundations of Modern Probability, 2nd edn. Springer, New York.
  • Mecke, J. (1967). Stationäre zufällige Maße auf lokalkompakten Abelschen Gruppen. Z. Wahrscheinlichkeitsth. 9, 36--58.
  • Mecke, J. and Muche, L. (1995). The Poisson Voronoi tessellation. I. A basic identity. Math. Nachr. 176, 199--208.
  • Miles, R. (1974). A synopsis of `Poisson flats in Euclidean spaces'. In Stochastic Geometry, eds E. F. Harding and D. G. Kendall, John Wiley, New York, pp. 202--227.
  • Møller, J. (1989). Random tessellations in $\R^d$. Adv. Appl. Prob. 21, 37--73.
  • Møller, J. (1994). Lectures on Random Voronoi Tessellations (Lecture Notes Statist. 87). Springer, New York.
  • Muche, L. (2005). The Poisson--Voronoi tessellation: relationships for edges. Adv. Appl. Prob. 37, 279--296.
  • Neveu, J. (1977). Processus ponctuels. In École d'Eté de Probabilités de Saint-Flour VI (Lecture Notes Math. 598). Springer, Berlin, pp. 249--445.
  • Schneider, R. and Weil, W. (2000). Stochastische Geometrie. Teubner, Stuttgart.
  • Stoyan, D., Kendall, W. S. and Mecke, J. (1995). Stochastic Geometry and Its Applications, 2nd edn. John Wiley, Chichester.