Abstract and Applied Analysis

Existence and Characterization of Solutions of Nonlinear Volterra-Stieltjes Integral Equations in Two Variables

Mohamed Abdalla Darwish and Józef Banaś

Full-text: Open access

Abstract

The paper is devoted mainly to the study of the existence of solutions depending on two variables of a nonlinear integral equation of Volterra-Stieltjes type. The basic tool used in investigations is the technique of measures of noncompactness and Darbo’s fixed point theorem. The results obtained in the paper are applicable, in a particular case, to the nonlinear partial integral equations of fractional orders.

Article information

Source
Abstr. Appl. Anal., Volume 2014, Special Issue (2013), Article ID 618434, 11 pages.

Dates
First available in Project Euclid: 27 February 2015

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1425047801

Digital Object Identifier
doi:10.1155/2014/618434

Mathematical Reviews number (MathSciNet)
MR3214441

Zentralblatt MATH identifier
07022735

Citation

Darwish, Mohamed Abdalla; Banaś, Józef. Existence and Characterization of Solutions of Nonlinear Volterra-Stieltjes Integral Equations in Two Variables. Abstr. Appl. Anal. 2014, Special Issue (2013), Article ID 618434, 11 pages. doi:10.1155/2014/618434. https://projecteuclid.org/euclid.aaa/1425047801


Export citation

References

  • D. Baleanu, K. Diethelm, E. Scalas, and J. J. Trujillo, Fractional Calculus: Models and Numerical Methods, World Scientific, New York, NY, USA, 2012.
  • K. Diethelm, The Analysis of Fractional Differential Equations, Lecture Notes in Mathematics, Springer, Berlin, Germany, 2010.
  • R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, River Edge, NJ, USA, 2000.
  • V. E. Tarasov, Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media, Nonlinear Physical Science, Springer, Heidelberg, Germany; Higher Education Press, Beijing, China, 2010.
  • N. T. Dung, “Fractional stochastic differential equations with applications to finance,” Journal of Mathematical Analysis and Applications, vol. 397, no. 1, pp. 334–348, 2013.
  • S. Abbas, M. Benchohra, and G. M. N'Guérékata, Topic in Fractional Differential Equations, vol. 27 of Developments in Mathematics, Springer, New York, NY, USA, 2012.
  • A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, vol. 204 of North-Holland Mathematics Studies, Elsevier Science B.V., Amsterdam, The Netherlands, 2006.
  • I. Podlubny, Fractional Differential Equations, vol. 198 of Mathematics in Science and Engineering, Academic Press, San Diego, Calif, USA, 1999.
  • J. Banaś and T. Zaja$\c{\,\!}$c, “A new approach to the theory of functional integral equations of fractional order,” Journal of Mathematical Analysis and Applications, vol. 375, no. 2, pp. 375–387, 2011.
  • T. Zaja$\c{\,\!}$c, “Solvability of fractional integral equations on an unbounded interval through the theory of Volterra-Stieltjes integral equations,” Zeitschrift für Analysis und ihre Anwendungen, vol. 33, no. 1, pp. 65–85, 2014.
  • S. Abbas, D. Baleanu, and M. Benchohra, “Global attractivity for fractional order delay partial integro-differential equations,” Advances in Difference Equations, vol. 2012, article 62, 2012.
  • S. Abbas, M. Benchohra, and J. J. Nieto, “Global attractivity of solutions for nonlinear fractional order Riemann-Liouville Volterra-Stieltjes partial integral equations,” Electronic Journal of Qualitative Theory of Differential Equations, no. 81, pp. 1–15, 2012.
  • S. Abbas and M. Benchohra, “Existence and stability of nonlinear, fractional order Riemann-Liouville Volterra-Stieltjes multi-delay integral equations,” Journal of Integral Equations and Applications, vol. 25, no. 2, pp. 143–158, 2013.
  • S. Abbas and M. Benchohra, “Fractional order integral equations of two independent variables,” Applied Mathematics and Computation, vol. 227, pp. 755–761, 2014.
  • A. N. Vityuk and A. V. Golushkov, “Existence of solutions of systems of partial differential equations of fractional order,” Nonlinear Oscillations, vol. 7, no. 3, pp. 328–335, 2004.
  • B. Ahmad, J. J. Nieto, A. Alsaedi, and H. Al-Hutami, “Existence of solutions for nonlinear fractional q-difference integral equations with two fractional orders and nonlocal four-point boundary conditions,” Journal of the Franklin Institute, vol. 351, no. 5, pp. 2890–2909, 2014.
  • J. Appell, J. Banaś, and N. Merentes, Bounded Variation and Around, vol. 17 of Series in Nonlinear Analysis and Applications, Walter de Gruyter, Berlin, Germany, 2014.
  • W. Rudin, Real and Complex Analysis, McGraw-Hill, New York, NY, USA, 1970.
  • J. Banaś and K. Goebel, Measures of Noncompactness in Banach Spaces, vol. 60 of Lecture Notes in Pure and Applied Mathematics, Marcel Dekker, New York, NY, USA, 1980.
  • R. R. Akhmerov, M. I. Kamenskiĭ, A. S. Potapov, A. E. Rodkina, and B. N. Sadovskiĭ, Measures of Noncompactness and Condensing Operators, vol. 55 of Operator Theory: Advances and Applications, Birkhäuser, Basel, Switzerland, 1992.
  • M. A. Toledano, T. D. Benavides, and G. L. Acedo, Measures of Noncompactness in Metric Fixed Point Theory, vol. 99 of Operator Theory: Advances and Applications, Birkhäuser, Basel, Switzerland, 1997.
  • J. Appell and P. P. Zabrejko, Nonlinear Superposition Operators, vol. 95 of Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, UK, 1990.
  • H. M. Srivastava and R. K. Saxena, “Operators of fractional integration and their applications,” Applied Mathematics and Computation, vol. 118, no. 1, pp. 1–52, 2001.
  • M. A. Darwish, “Nondecreasing solutions of a fractional quadratic integral equation of Urysohn-Volterra type,” Dynamic Systems and Applications, vol. 20, no. 4, pp. 423–438, 2011.
  • M. A. Darwish and S. K. Ntouyas, “On a quadratic fractional Hammerstein-Volterra integral equation with linear modification of the argument,” Nonlinear Analysis: Theory, Methods & Applications, vol. 74, no. 11, pp. 3510–3517, 2011.
  • S. Abbas, M. Benchohra, and J. Henderson, “Global asymptotic stability of solutions of nonlinear quadratic Volterra integral equations of fractional order,” Communications on Applied Nonlinear Analysis, vol. 19, no. 1, pp. 79–89, 2012.
  • J. Caballero, M. A. Darwish, and K. Sadarangani, “Solvability of a fractional hybrid initial value problem with supremum by using measures of noncompactness in Banach algebras,” Applied Mathematics and Computation, vol. 224, pp. 553–563, 2013.
  • G. M. Fichtenholz, Differential and Integral Calculus, vol. 2, Wydawnictwo Naukowe PWN, Warsaw, Poland, 2007 (Polish).
  • I. K. Argyros, “On a class of quadratic integral equations with perturbation,” Functiones et Approximatio Commentarii Mathematici, vol. 20, pp. 51–63, 1992.
  • S. Chandrasekhar, Radiative Transfer, Oxford University Press, London, UK, 1950. \endinput