Abstract and Applied Analysis

Banach-Saks Type and Gurariǐ Modulus of Convexity of Some Banach Sequence Spaces

Henryk Hudzik, Vatan Karakaya, Mohammad Mursaleen, and Necip Simsek

Full-text: Open access

Abstract

Banach-Saks type is calculated for two types of Banach sequence spaces and Gurariǐ modulus of convexity is estimated from above for the spaces of one type among them.

Article information

Source
Abstr. Appl. Anal., Volume 2014, Special Issue (2013), Article ID 427382, 9 pages.

Dates
First available in Project Euclid: 7 October 2014

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1412687019

Digital Object Identifier
doi:10.1155/2014/427382

Mathematical Reviews number (MathSciNet)
MR3191042

Zentralblatt MATH identifier
07022373

Citation

Hudzik, Henryk; Karakaya, Vatan; Mursaleen, Mohammad; Simsek, Necip. Banach-Saks Type and Gurariǐ Modulus of Convexity of Some Banach Sequence Spaces. Abstr. Appl. Anal. 2014, Special Issue (2013), Article ID 427382, 9 pages. doi:10.1155/2014/427382. https://projecteuclid.org/euclid.aaa/1412687019


Export citation

References

  • G. Alherk and H. Hudzik, “Uniformly non-${l}_{n}^{(1)}$ Musielak-Orlicz spaces of Bochner type,” Forum Mathematicum, vol. 1, no. 4, pp. 403–410, 1989.
  • G. Alherk and H. Hudzik, “Copies of ${l}^{1}$ and ${c}_{0}$ in Musielak-Orlicz sequence spaces,” Commentationes Mathematicae Universitatis, vol. 35, no. 1, pp. 9–19, 1994.
  • L. X. Bo, Y. A. Cui, P. Foralewski, and H. Hudzik, “Local uniform rotundity and weak local uniform rotundity of Musielak-Orlicz sequence spaces endowed with the Orlicz norm,” Nonlinear Analysis, Theory, Methods and Applications, vol. 69, no. 5-6, pp. 1559–1569, 2008.
  • Y. A. Cui, H. Hudzik, and R. Płuciennik, “Banach-Saks property in some Banach sequence spaces,” Annales Polonici Mathematici, vol. 65, no. 2, pp. 193–202, 1997.
  • Y. A. Cui, H. Hudzik, N. Petrot, S. Suantai, and A. Szymaszkiewicz, “Basic topological and geometric properties of Cesàro-Orlicz spaces,” Proceedings of the Indian Academy of Sciences, vol. 115, no. 4, pp. 461–476, 2005.
  • Y. A. Cui, H. Hudzik, M. Wisła, and M. Zou, “Extreme points and strong U-points in Musielak-Orlicz sequence spaces equipped with the Orlicz norm,” Zeitschrift fur Analysis und ihre Anwendung, vol. 26, no. 1, pp. 87–101, 2007.
  • M. Denker and H. Hudzik, “Uniformly non-${l}_{n}^{(1)}$ Musielak-Orlicz sequence spaces,” Proceedings of the Indian Academy of Sciences, vol. 101, no. 2, pp. 71–86, 1991.
  • F. Fuentes and F. L. Hernandez, “On weighted Orlicz sequence spaces and their subspaces,” Rocky Mountain Journal of Mathematics, vol. 18, pp. 585–599, 1988.
  • H. Hudzik, “Uniformly non-${l}_{n}^{(1)}$ Orlicz spaces with Luxemburg norm,” Studia Mathematica, vol. 81, no. 3, pp. 271–284, 1985.
  • H. Hudzik and D. Pallaschke, “On some convexity properties of Orlicz sequence spaces equipped with the Luxemburg norm,” Mathematische Nachrichten, vol. 186, pp. 167–185, 1997.
  • H. Hudzik and Y. N. Ye, “Support functionals and smoothness in Musielak-Orlicz sequence spaces endowed with the Luxemburg norm,” Commentationes Mathematicae Universitatis Carolinae, vol. 031, no. 4, pp. 661–684, 1990.
  • H. Hudzik and L. Szymaszkiewicz, “Basic topological and geometric properties of orlicz spaces over an arbitrary set of atoms,” Zeitschrift fur Analysis und ihre Anwendung, vol. 27, no. 4, pp. 425–449, 2008.
  • J. E. Jamison, A. Kamińska, and G. Lewicki, “One-complemented subspaces of Musielak-Orlicz sequence spaces,” Journal of Approximation Theory, vol. 130, no. 1, pp. 1–37, 2004.
  • A. Kamińska, “Strict convexity of sequence Orlicz-Musielak spaces with Orlicz norm,” Journal of Functional Analysis, vol. 50, no. 3, pp. 285–305, 1983.
  • A. Kamińska, “Uniform rotundity of Musielak-Orlicz sequence spaces,” Journal of Approximation Theory, vol. 47, no. 4, pp. 302–322, 1986.
  • A. Kamińska, “Flat Orlicz-Musielak sequence spaces,” Bulletin de L'Academie Polonaise des Sciences, vol. 29, pp. 137–144, 1981.
  • A. Kamińska and L. Han Ju, “Banach-Saks properties of Musielak-Orlicz and Nakano sequence spaces,” Proceedings of the American Mathematical Society, vol. 142, pp. 547–558, 2014.
  • A. Kamińska, “Uniform rotundity in every direction of sequence Orlicz spaces,” Bulletin de L'Academie Polonaise des Sciences, vol. 32, pp. 589–594, 1984.
  • A. Kamińska, “Rotundity of sequence Musielak-Orlicz spaces,” Bulletin de L'Academie Polonaise des Sciences, vol. 29, pp. 137–144, 1981.
  • V. Karakaya, “Some geometric properties of sequence spaces involving lacunary sequence,” Journal of Inequalities and Applications, vol. 2007, Article ID 81028, 2007.
  • E. Katirtzoglou, “Type and Cotype of Musielak-Orlicz Sequence Spaces,” Journal of Mathematical Analysis and Applications, vol. 226, no. 2, pp. 431–455, 1998.
  • H. Knaust, “Orlicz sequence spaces of Banach-Saks type,” Archiv der Mathematik, vol. 59, no. 6, pp. 562–565, 1992.
  • P. Kolwicz, “Strictly and uniformly monotone sequential Musielak-Orlicz spaces, Fourth International Conference on Function Spaces (Zielona Gora, 1995),” Collectanea Mathematica, vol. 50, no. 1, pp. 1–17, 1999.
  • W. Kurc, “Strictly and uniformly monotone sequential Musielak-Orlicz spaces,” Collectanea Mathematica, vol. 50, no. 1, pp. 1–17, 1999.
  • V. Peirats and C. Ruiz, “On ${l}_{p}$-copies in Musielak-Orlicz sequence spaces,” Archiv der Mathematik, vol. 58, no. 2, pp. 164–173, 1992.
  • Y. Cui and H. Hudzik, “Packing constant for Cesàro sequence spaces, proceedings of the third world congress of nonlinear analysis, part 4 (Catania, 2000),” Nonlinear Analysis, Theory, Methods and Applications, vol. 47, no. 4, pp. 2695–2702, 2001.
  • Y. A. Cui and H. Hudzik, “Some geometric properties related to fixed point theory in Cesàro spaces,” Collectanea Mathematica, vol. 50, no. 3, pp. 277–288, 1999.
  • Y. A. Cui and H. Hudzik, “On the Banach-Saks and weak Banach-Saks properties of some Banach sequence spaces,” Acta Scientiarum Mathematicarum, vol. 65, no. 1-2, pp. 179–187, 1999.
  • Y. A. Cui and H. Hudzik, “Packing constant for Cesàro sequence spaces,” Nonlinear Analysis, Theory, Methods and Applications, vol. 47, no. 4, pp. 2695–2702, 2001.
  • Y. A. Cui and C. Meng, “Banach-Saks property and property ($\beta $) in Cesàro sequence spaces,” Southeast Asian Bulletin of Mathematics, vol. 24, pp. 201–210, 2000.
  • S. Suantai, “In the H-property of some Banach sequence spaces,” Archivum Mathematicum, vol. 39, pp. 309–316, 2003.
  • P. N. Ng and P. Y. Lee, “Cesàro sequences spaces of non-absolute type,” Commentationes Mathematicae, vol. 20, no. 2, pp. 429–433, 1978.
  • P. Foralewski, H. Hudzik, and A. Szymaszkiewicz, “Local rotundity structure of Cesàro-Orlicz sequence spaces,” Journal of Mathematical Analysis and Applications, vol. 345, no. 1, pp. 410–419, 2008.
  • P. Foralewski, H. Hudzik, and A. Szymaszkiewicz, “Some remarks on Cesàro-Orlicz sequence spaces,” Mathematical Inequalities and Applications, vol. 13, no. 2, pp. 363–386, 2010.
  • A. Kamińska and D. Kubiak, “On isometric copies of ${l}_{\infty }$ and James constants in Cesàro-Orlicz sequence spaces,” Journal of Mathematical Analysis and Applications, vol. 372, no. 2, pp. 574–584, 2010.
  • D. Kubiak, “A note on Cesàro-Orlicz sequence spaces,” Journal of Mathematical Analysis and Applications, vol. 349, no. 1, pp. 291–296, 2009.
  • P. Foralewski, H. Hudzik, and L. Szymaszkiewicz, “Local rotundity structure of generalized Orlicz-Lorentz sequence spaces,” Nonlinear Analysis, Theory, Methods and Applications, vol. 68, no. 9, pp. 2709–2718, 2008.
  • P. Foralewski, H. Hudzik, and P. Kolwicz, “Non-squareness properties of Orlicz-Lorentz sequence spaces,” Journal of Functional Analysis, vol. 264, no. 2, pp. 605–629, 2013.
  • M. Mursaleen, F. Başar, and B. Altay, “On the Euler sequence spaces which include the spaces $\ell $p and $\ell \infty $ II,” Nonlinear Analysis, Theory, Methods and Applications, vol. 65, no. 3, pp. 707–717, 2006.
  • H. Hudzik and A. Narloch, “Relationships between monotonicity and complex rotundity properties with some consequences,” Mathematica Scandinavica, vol. 96, no. 2, pp. 289–306, 2005.
  • P. Kolwicz and R. Płuciennik, “Points of upper local uniform monotonicity in Calderón-Lozanovskii spaces,” Journal of Convex Analysis, vol. 17, no. 1, pp. 111–130, 2010.
  • P. Kolwicz and K. Leśnik, “Property $\beta $ of Rolewicz and orthogonal convexities of Calderón-Lozanovskiǐ spaces,” Nonlinear Analysis, Theory, Methods and Applications, vol. 74, no. 13, pp. 4352–4368, 2011.
  • P. Kolwicz, “Kadec-Klee properties of Calderón-Lozanovskiǐ sequence spaces,” Collectanea Mathematica, vol. 63, no. 1, pp. 45–58, 2012.
  • B. Altay and F. Başar, “On the paranormed Riesz sequence spaces of non-absolute type,” Southeast Asian Bulletin of Mathematics, vol. 26, pp. 701–715, 2002.
  • B. Altay and F. Başar, “Generalization of the sequence space $l(p)$ derived by weighted mean,” Journal of Mathematical Analysis and Applications, vol. 330, no. 1, pp. 174–185, 2007.
  • P. Kolwicz, “Property ($\beta $) and orthogonal convexities income class of Köthe sequence spaces,” Publicationes Mathematicae, vol. 63, no. 4, pp. 587–609, 2003.
  • H. Hudzik and P. Kolwicz, “On property ($\beta $) of Rolewicz in Köthe-Bochner sequence spaces,” Studia Mathematica, vol. 162, no. 3, pp. 195–212, 2004.
  • I. J. Maddox, “Paranormed sequence spaces generated by infinite matrices,” Proceedings-Cambridge Philosophical Society, vol. 64, pp. 335–340, 1968.
  • E. Malkowsky and M. Mursaleen, “Matrix transformations between FK-spaces and the sequence spaces $m(\phi )$ and $n(\phi )$,” Journal of Mathematical Analysis and Applications, vol. 196, no. 2, pp. 659–665, 1995.
  • E. Malkowsky and M. Mursaleen, “Compact matrix operators between the spaces $m(\phi )$, $n(\phi )$ and ${l}_{p}$,” Bulletin of the Korean Mathematical Society, vol. 48, no. 5, pp. 1093–1103, 2011.
  • E. Malkowsky and E. Savas, “Matrix transformations between sequence spaces of generalized weighted means,” Applied Mathematics and Computation, vol. 147, no. 2, pp. 333–345, 2004.
  • M. Mursaleen, “Some geometric proprties of a sequence space related to ${l}^{p}$,” Bulletin of the Australian Mathematical Society, vol. 67, no. 2, pp. 343–347, 2003.
  • M. Mursaleen, Elements of Metric Spaces, Anamaya, New Delhi, India, 2005.
  • M. Mursaleen, R. Çolak, and M. Et, “Some geometric inequalities in a new Banach sequence space,” Journal of Inequalities and Applications, vol. 2007, Article ID 86757, 6 pages, 2007.
  • W. L. C. Sargent, “Some sequence spaces related to the ${l}^{p}$ spaces,” Journal of the London Mathematical Society, vol. 35, pp. 161–171, 1960.
  • S. Simons, “The sequence spaces $l({p}_{{\lightv}})$ and $m({p}_{{\lightv}})$,” Proceedings of the London Mathematical Society, vol. 15, no. 3, pp. 422–436, 1965.
  • N. Şimşek and V. Karakaya, “On some geometrial properties of generalized modular spaces of Cesàro type defined by weighted means,” Journal of Inequalities and Applications, vol. 2009, Article ID 932734, 13 pages, 2009.
  • E. Savaş, V. Karakaya, and N. Şimşek, “Some $l(p)$-Type new sequence spaces and their geometric properties,” Abstract and Applied Analysis, vol. 2009, Article ID 696971, 12 pages, 2009.
  • N. Şimşek, E. Savas, and V. Karakaya, “On geometrical properties of some banach spaces,” Applied Mathematics & Information Sciences, vol. 7, no. 1, pp. 295–300, 2013.
  • C. S. Wang, “On Nörlund sequence space,” Tamkang Journal of Mathematics, vol. 9, pp. 269–274, 1978.
  • B. C. Tripathy and M. Sen, “On a new class of sequences related to the space ${l}^{p}$,” Tamkang Journal of Mathematics, vol. 33, no. 2, pp. 167–171, 2002.
  • J. Y. T. Woo, “On Modular Sequence spaces,” Studia Mathematica, vol. 48, pp. 271–289, 1973.
  • J. Diestel, “Sequence and series in Banach spaces,” in Graduate Texts in Math, vol. 92, Springer, New York, NY, USA, 1984.
  • J. Garcia-Falset, “Stability and fixed points for nonexpansive mappings,” Houston Journal of Mathematics, vol. 20, pp. 495–505, 1994.
  • J. G. Falset, “The fixed point property in Banach spaces with the NUS-property,” Journal of Mathematical Analysis and Applications, vol. 215, no. 2, pp. 532–542, 1997.
  • J. A. Clarkson, “Uniformly convex spaces,” Transactions of the American Mathematical Society, vol. 40, pp. 396–414, 1936.
  • M. M. Day, “Uniform convexity in factor and conjugate spaces,” Annals of Mathematics, vol. 45, no. 2, pp. 375–385, 1944.
  • V. I. Gurariǐ, “On moduli of convexity and attering of Banach spaces,” Soviet Mathematics Doklady, vol. 161, no. 5, pp. 1003–1006, 1965.
  • V. I. Gurariǐ, “On differential properties of the convexity moduli of Banach spaces,” Matematicheskie Issledovaniya, vol. 2, pp. 141–148, 1969.
  • N. I. Gurariǐ and Y. U. Sozonov, “Normed spaces that do not have distortion of the unit sphere,” Matematicheskie Zametki, vol. 7, pp. 307–310, 1970 (Russian).
  • C. Zanco and A. Zucchi, “Moduli of rotundity and smoothness for convex bodies,” Bolletino della Unione Matematica Italiana B, vol. 7, no. 7, pp. 833–855, 1993. \endinput