Abstract and Applied Analysis

Modeling Saturated Diagnosis and Vaccination in Reducing HIV/AIDS Infection

Can Chen and Yanni Xiao

Full-text: Open access

Abstract

A mathematical model is proposed to consider the effects of saturated diagnosis and vaccination on HIV/AIDS infection. By employing center manifold theory, we prove that there exists a backward bifurcation which suggests that the disease cannot be eradicated even if the basic reproduction number is less than unity. Global stability of the disease-free equilibrium is investigated for appropriate conditions. When the basic reproduction number is greater than unity, the system is uniformly persistent. The proposed model is applied to describe HIV infection among injecting drug users (IDUs) in Yunnan province, China. Numerical studies indicate that new cases and prevalence are sensitive to transmission rate, vaccination rate, and vaccine efficacy. The findings suggest that increasing vaccination rate and vaccine efficacy and enhancing interventions like reducing share injectors can greatly reduce the transmission of HIV among IDUs in Yunnan province, China.

Article information

Source
Abstr. Appl. Anal., Volume 2014, Special Issue (2013), Article ID 414383, 12 pages.

Dates
First available in Project Euclid: 6 October 2014

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1412607542

Digital Object Identifier
doi:10.1155/2014/414383

Mathematical Reviews number (MathSciNet)
MR3193513

Zentralblatt MATH identifier
07022348

Citation

Chen, Can; Xiao, Yanni. Modeling Saturated Diagnosis and Vaccination in Reducing HIV/AIDS Infection. Abstr. Appl. Anal. 2014, Special Issue (2013), Article ID 414383, 12 pages. doi:10.1155/2014/414383. https://projecteuclid.org/euclid.aaa/1412607542


Export citation

References

  • J. M. Hyman, J. Li, and E. A. Stanley, “The differential infectivity and staged progression models for the transmission of HIV,” Mathematical Biosciences, vol. 155, no. 2, pp. 77–109, 1999.
  • R. Naresh, A. Tripathi, and D. Sharma, “Modelling and analysis of the spread of AIDS epidemic with immigration of HIV infectives,” Mathematical and Computer Modelling, vol. 49, no. 5-6, pp. 880–892, 2009.
  • F. Nyabadza, Z. Mukandavire, and S. D. Hove-Musekwa, “Modelling the HIV/AIDS epidemic trends in South Africa: insights from a simple mathematical model,” Nonlinear Analysis: Real World Applications, vol. 12, no. 4, pp. 2091–2104, 2011.
  • J. M. Hyman, J. Li, and E. A. Stanley, “Modeling the impact of random screening and contact tracing in reducing the spread of HIV,” Mathematical Biosciences, vol. 181, no. 1, pp. 17–54, 2003.
  • A. B. Gumel, C. C. McCluskey, and P. van den Driessche, “Mathematical study of a staged-progression HIV model with imperfect vaccine,” Bulletin of Mathematical Biology, vol. 68, no. 8, pp. 2105–2128, 2006.
  • E. H. Elbasha and A. B. Gumel, “Theoretical assessment of public health impact of imperfect prophylactic HIV-1 vaccines with therapeutic benefits,” Bulletin of Mathematical Biology, vol. 68, no. 3, pp. 577–614, 2006.
  • O. Sharomi, C. N. Podder, A. B. Gumel, E. H. Elbasha, and J. Watmough, “Role of incidence function in vaccine-induced backward bifurcation in some HIV models,” Mathematical Biosciences, vol. 210, no. 2, pp. 436–463, 2007.
  • F. Nyabadza and Z. Mukandavire, “Modelling HIV/AIDS in the presence of an HIV testing and screening campaign,” Journal of Theoretical Biology, vol. 280, no. 1, pp. 167–179, 2011.
  • Y. Xiao, S. Tang, Y. Zhou, R. J. Smith, J. Wu, and N. Wang, “Predicting the HIV/AIDS epidemic and measuring the effect of mobility in mainland China,” Journal of Theoretical Biology, vol. 317, pp. 271–285, 2013.
  • X. Zhang and X. Liu, “Backward bifurcation of an epidemic model with saturated treatment function,” Journal of Mathematical Analysis and Applications, vol. 348, no. 1, pp. 433–443, 2008.
  • P. van den Driessche and J. Watmough, “Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,” Mathematical Biosciences, vol. 180, no. 1-2, pp. 29–48, 2002.
  • C. Castillo-Chavez and B. Song, “Dynamical models of tuberculosis and their applications,” Mathematical Biosciences and Engineering, vol. 1, no. 2, pp. 361–404, 2004.
  • B. Buonomo and D. Lacitignola, “On the backward bifurcation of a vaccination model with nonlinear incidence,” Nonlinear Analysis: Modelling and Control, vol. 16, no. 1, pp. 30–46, 2011.
  • S. D. Hove-Musekwa, F. Nyabadza, and H. Mambili-Mamboundou, “Modelling hospitalization, home-based care, and individual withdrawal for people living with HIV/AIDS in high prevalence settings,” Bulletin of Mathematical Biology, vol. 73, no. 12, pp. 2888–2915, 2011.
  • L. Zhou and M. Fan, “Dynamics of an SIR epidemic model with limited medical resources revisited,” Nonlinear Analysis: Real World Applications, vol. 13, no. 1, pp. 312–324, 2012.
  • J. Arino, C. C. McCluskey, and P. van den Driessche, “Global results for an epidemic model with vaccination that exhibits backward bifurcation,” SIAM Journal on Applied Mathematics, vol. 64, no. 1, pp. 260–276, 2003.
  • Z. Mukandavire and W. Garira, “Effects of public health educational campaigns and the role of sex workers on the spread of HIV/AIDS among heterosexuals,” Theoretical Population Biology, vol. 72, no. 3, pp. 346–365, 2007.
  • Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, vol. 191 of Mathematics in Science and Engineering, Academic Press, Boston, Mass, USA, 1993.
  • Y. Xiao and L. Chen, “Modeling and analysis of a predator-prey model with disease in the prey,” Mathematical Biosciences, vol. 171, no. 1, pp. 59–82, 2001.
  • X.-Q. Zhao, Dynamical Systems in Population Biology, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 16, Springer, New York, NY, USA, 2003.
  • T. Zhang, M. Jia, H. Luo, Y. Zhou, and N. Wang, “Study on a HIV/AIDS model with application to Yunnan province, China,” Applied Mathematical Modelling, vol. 35, no. 9, pp. 4379–4392, 2011.
  • L. Lu, M. Jia, J. Lu, H. Luo, and X. Zhang, “Analysis of HIV/AIDS prevalence in Yunnan province,” Journal for China AIDS/STD, vol. 11, no. 3, pp. 172–175, 2005.
  • L. Lu, M. Jia, Y. Ma et al., “The changing face of HIV in China,” Nature, vol. 455, no. 7213, pp. 609–611, 2008.
  • X. Xu, Y. Xiao, and N. Wang, “Modeling sexual transmission of HIV/AIDS in Jiangsu province, China,” Mathematical Methods in the Applied Sciences, vol. 36, no. 2, pp. 234–248, 2013.
  • L. Liu, X.-Q. Zhao, and Y. Zhou, “A tuberculosis model with seasonality,” Bulletin of Mathematical Biology, vol. 72, no. 4, pp. 931–952, 2010.
  • L. Han, J. Lou, Y. Ruan, and Y. Shao, “The analysis of the HIV/AIDS mathematical model for the injection drug use population,” Journal of Biomathematics, vol. 23, no. 3, pp. 429–434, 2008.
  • N. Bacaër, X. Abdurahman, and J. Ye, “Modeling the HIV/AIDS epidemic among injecting drug users and sex workers in Kunming, China,” Bulletin of Mathematical Biology, vol. 68, no. 3, pp. 525–550, 2006. \endinput