Abstract and Applied Analysis

Fixed Point Theory in α -Complete Metric Spaces with Applications

N. Hussain, M. A. Kutbi, and P. Salimi

Full-text: Open access

Abstract

The aim of this paper is to introduce new concepts of α - η -complete metric space and α - η -continuous function and establish fixed point results for modified α - η - ψ -rational contraction mappings in α - η -complete metric spaces. As an application, we derive some Suzuki type fixed point theorems and new fixed point theorems for ψ -graphic-rational contractions. Moreover, some examples and an application to integral equations are given here to illustrate the usability of the obtained results.

Article information

Source
Abstr. Appl. Anal., Volume 2014, Special Issue (2013), Article ID 280817, 11 pages.

Dates
First available in Project Euclid: 6 October 2014

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1412607387

Digital Object Identifier
doi:10.1155/2014/280817

Mathematical Reviews number (MathSciNet)
MR3166589

Zentralblatt MATH identifier
07022081

Citation

Hussain, N.; Kutbi, M. A.; Salimi, P. Fixed Point Theory in $\alpha $ -Complete Metric Spaces with Applications. Abstr. Appl. Anal. 2014, Special Issue (2013), Article ID 280817, 11 pages. doi:10.1155/2014/280817. https://projecteuclid.org/euclid.aaa/1412607387


Export citation

References

  • S. Banach, “Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales,” Fundamenta Mathematicae, vol. 3, pp. 133–181, 1922.
  • V. Berinde, Iterative Approximation of Fixed Points, Springer, Berlin, Germany, 2007.
  • F. Bojor, “Fixed point theorems for Reich type contractions on metric spaces with a graph,” Nonlinear Analysis. Theory, Methods & Applications, vol. 75, no. 9, pp. 3895–3901, 2012.
  • L. Ćirić, N. Hussain, and N. Cakić, “Common fixed points for Ćirić type f-weak contraction with applications,” Publicationes Mathematicae Debrecen, vol. 76, no. 1-2, pp. 31–49, 2010.
  • L. Ćirić, M. Abbas, R. Saadati, and N. Hussain, “Common fixed points of almost generalized contractive mappings in ordered metric spaces,” Applied Mathematics and Computation, vol. 217, no. 12, pp. 5784–5789, 2011.
  • R. Espínola and W. A. Kirk, “Fixed point theorems in R-trees with applications to graph theory,” Topology and its Applications, vol. 153, no. 7, pp. 1046–1055, 2006.
  • N. Hussain, P. Salimi, and A. Latif, “Fixed point results for single and set-valued $\alpha \text{-}\eta \text{-}\psi $-contractive mappings,” Fixed Point Theory and Applications, vol. 2013, article 212, 2013.
  • N. Hussain, E. Karap\inar, P. Salimi, and F. Akbar, “$\alpha $-admissible mappings and related fixed point theorems,” Journal of Inequalities and Applications, vol. 2013, article 114, 11 pages, 2013.
  • N. Hussain, M. A. Kutbi, and P. Salimi, “Best proximity point results for modified $\alpha \text{-}\psi $-proximal rational contractions,” Abstract and Applied Analysis, vol. 2013, Article ID 927457, 14 pages, 2013.
  • N. Hussain, S. Al-Mezel, and P. Salimi, “Fixed points for $\psi $-graphic contractions with application to integral equations,” Abstract and Applied Analysis, vol. 2013, Article ID 575869, 11 pages, 2013.
  • J. Jachymski, “The contraction principle for mappings on ametric space with a graph,” Proceedings of the American Mathematical Society, vol. 136, no. 4, pp. 1359–1373, 2008.
  • E. Karap\inar and B. Samet, “Generalized $\alpha \text{-}\psi $ contractive type mappings and related fixed point theorems with applications,” Abstract and Applied Analysis, vol. 2012, Article ID 793486, 17 pages, 2012.
  • P. D. Proinov, “A generalization of the Banach contraction principle with high order of convergence of successive approximations,” Nonlinear Analysis. Theory, Methods & Applications, vol. 67, no. 8, pp. 2361–2369, 2007.
  • P. D. Proinov, “New general convergence theory for iterative processes and its applications to Newton-Kantorovich type theorems,” Journal of Complexity, vol. 26, no. 1, pp. 3–42, 2010.
  • A. C. M. Ran and M. C. B. Reurings, “A fixed point theorem inpartially ordered sets and some applications to matrix equations,” Proceedings of the American Mathematical Society, vol. 132, no. 5, pp. 1435–1443, 2004.
  • P. Salimi, A. Latif, and N. Hussain, “Modified $\alpha \text{-}\psi $-contractive mappings with applications,” Fixed Point Theory and Applications, vol. 2013, article 151, 2013.
  • P. Salimi, C. Vetro, and P. Vetro, “Fixed point theorems for twisted ($\alpha ,\beta $)-$\psi $-contractive type mappings and applications,” Filomat, vol. 27, no. 4, pp. 605–615, 2013.
  • P. Salimi, C. Vetro, and P. Vetro, “Some new fixed point results in non-Archimedean fuzzy metric spaces,” Nonlinear Analysis. Modelling and Control, vol. 18, no. 3, pp. 344–358, 2013.
  • B. Samet, C. Vetro, and P. Vetro, “Fixed point theorems for $\alpha \text{-}\psi $-contractive type mappings,” Nonlinear Analysis. Theory, Methods & Applications, vol. 75, no. 4, pp. 2154–2165, 2012.
  • W. Sintunavarat, S. Plubtieng, and P. Katchang, “Fixed point result and applications on a b-metric space endowed with an arbitrary binary relation,” Fixed Point Theory and Applications, vol. 2013, article 296, 2013.
  • T. Suzuki, “A generalized Banach contraction principle that characterizes metric completeness,” Proceedings of the American Mathematical Society, vol. 136, no. 5, pp. 1861–1869, 2008.
  • N. Shobkolaei, S. Sedghi, J. R. Roshan, and N. Hussain, “Suzuki-type fixed point results in metric-like spaces,” Journal of Function Spaces and Applications, vol. 2013, Article ID 143686, 9 pages, 2013.
  • N. Hussain, D. Dorić, Z. Kadelburg, and S. Radenović, “Suzuki-type fixed point results in metric type spaces,” Fixed Point Theory and Applications, vol. 2012, article 126, 2012.
  • D. Dorić, Z. Kadelburg, and S. Radenović, “Edelstein-Suzuki-type fixed point results in metric and abstract metric spaces,” Nonlinear Analysis. Theory, Methods & Applications, vol. 75, no. 4, pp. 1927–1932, 2012.
  • Z. Kadelburg and S. Radenović, “Generalized quasicontractions in orbitally complete abstract metric spaces,” Fixed Point Theory, vol. 13, no. 2, pp. 527–536, 2012.
  • D. Dorić, Z. Kadelburg, S. Radenović, and P. Kumam, “A note on fixed point results without monotone property in partially ordered metric spaces,” Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales.
  • R. M. Bianchini and M. Grandolfi, “Trasformazioni di tipo contrattivo generalizzato in uno spazio metrico,” Atti della Accademia Nazionale dei Lincei. Rendiconti, vol. 45, pp. 212–216, 1968.
  • R. P. Agarwal, N. Hussain, and M.-A. Taoudi, “Fixed point theorems in ordered Banach spaces and applications to nonlinear integral equations,” Abstract and Applied Analysis, vol. 2012, Article ID 245872, 15 pages, 2012.
  • N. Hussain, A. R. Khan, and R. P. Agarwal, “Krasnosel'skii and Ky Fan type fixed point theorems in ordered Banach spaces,” Journal of Nonlinear and Convex Analysis, vol. 11, no. 3, pp. 475–489, 2010.
  • N. Hussain and M. A. Taoudi, “Krasnosel'skii-type fixed point theorems with applications to Volterra integral equations,” Fixed Point Theory and Applications, vol. 2013, article 196, 2013. \endinput