Abstract and Applied Analysis

Zeros, Poles, and Fixed Points of Meromorphic Solutions of Difference Painlevé Equations

Shuang-Ting Lan and Zong-Xuan Chen

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

In this paper, we mainly study the properties of transcendental meromorphic solutions f ( z ) of difference Painlevé equations w ( z + 1 ) w ( z - 1 ) ( w ( z ) - 1 ) = η ( z ) w 2 ( z ) - λ ( z ) w ( z ) and w ( z + 1 ) w ( z - 1 ) ( w ( z ) - 1 ) = η ( z ) w ( z ) and obtain precise estimations of the exponents of convergence of zeros, poles of Δ f ( z ) and Δ f ( z ) / f ( z ) , and of fixed points of f ( z + c ) for any c .

Article information

Source
Abstr. Appl. Anal., Volume 2014 (2014), Article ID 782024, 8 pages.

Dates
First available in Project Euclid: 6 October 2014

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1412607229

Digital Object Identifier
doi:10.1155/2014/782024

Mathematical Reviews number (MathSciNet)
MR3198247

Zentralblatt MATH identifier
07023057

Citation

Lan, Shuang-Ting; Chen, Zong-Xuan. Zeros, Poles, and Fixed Points of Meromorphic Solutions of Difference Painlevé Equations. Abstr. Appl. Anal. 2014 (2014), Article ID 782024, 8 pages. doi:10.1155/2014/782024. https://projecteuclid.org/euclid.aaa/1412607229


Export citation

References

  • L. Fuchs, “Sur quelques équations différentielles linéares du second ordre,” Comptes Rendus de l'Académie des Sciences, vol. 141, pp. 555–558, 1905.
  • B. Gambier, “Sur les équations différentielles du second ordre et du premier degré dont l'intégrale générale est a points critiques fixes,” Acta Mathematica, vol. 33, no. 1, pp. 1–55, 1910.
  • P. Painlevé, “Mémoire sur les équations différentielles dont l'intégrale générale est uniforme,” Bulletin de la Société Mathématique de France, vol. 28, pp. 201–261, 1900.
  • P. Painlevé, “Sur les équations différentielles du second ordre et d'ordre supérieur dont l'intégrale générale est uniforme,” Acta Mathematica, vol. 25, no. 1, pp. 1–85, 1902.
  • M. J. Ablowitz, R. Halburd, and B. Herbst, “On the extension of the Painlevé property to difference equations,” Nonlinearity, vol. 13, no. 3, pp. 889–905, 2000.
  • W. K. Hayman, Meromorphic Functions, Clarendon Press, Oxford, UK, 1964.
  • L. Yang, Value Distribution Theory and Its New Research, Science Press, Beijing, China, 1982, (Chinese).
  • R. G. Halburd and R. J. Korhonen, “Existence of finite-order meromorphic solutions as a detector of integrability in difference equations,” Physica D: Nonlinear Phenomena, vol. 218, no. 2, pp. 191–203, 2006.
  • Z.-X. Chen and K. H. Shon, “Value distribution of meromorphic solutions of certain difference Painlevé equations,” Journal of Mathematical Analysis and Applications, vol. 364, no. 2, pp. 556–566, 2010.
  • O. Ronkainen, “Meromorphic solutions of difference Painlevé equations,” Annales Academiae Scientiarum Fennicae, vol. 155, p. 59, 2010.
  • J. L. Zhang and L. Z. Yang, “Meromorphic solutions of Painlevé III difference equations,” Acta Mathematica Sinica, vol. 57, no. 1, pp. 181–188, 2014 (Chinese).
  • S.-T. Lan and Z.-X. Chen, “On properties of meromorphic solutions of certain difference painlevé III equations,” Abstract and Applied Analysis, vol. 2014, Article ID 208701, 9 pages, 2014.
  • Y.-M. Chiang and S.-J. Feng, “On the Nevanlinna characteristic of $f(z+\eta )$ and difference equations in the complex plane,” Ramanujan Journal, vol. 16, no. 1, pp. 105–129, 2008.
  • R. G. Halburd and R. J. Korhonen, “Difference analogue of the lemma on the logarithmic derivative with applications to difference equations,” Journal of Mathematical Analysis and Applications, vol. 314, no. 2, pp. 477–487, 2006.
  • I. Laine and C.-C. Yang, “Clunie theorems for difference and $q$-difference polynomials,” Journal of the London Mathematical Society, vol. 76, no. 3, pp. 556–566, 2007. \endinput