Abstract and Applied Analysis

Solving Fokker-Planck Equations on Cantor Sets Using Local Fractional Decomposition Method

Shao-Hong Yan, Xiao-Hong Chen, Gong-Nan Xie, Carlo Cattani, and Xiao-Jun Yang

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

The local fractional decomposition method is applied to approximate the solutions for Fokker-Planck equations on Cantor sets with local fractional derivative. The obtained results give the present method that is very effective and simple for solving the differential equations on Cantor set.

Article information

Source
Abstr. Appl. Anal., Volume 2014, Special Issue (2014), Article ID 396469, 6 pages.

Dates
First available in Project Euclid: 6 October 2014

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1412607144

Digital Object Identifier
doi:10.1155/2014/396469

Mathematical Reviews number (MathSciNet)
MR3193508

Zentralblatt MATH identifier
07022308

Citation

Yan, Shao-Hong; Chen, Xiao-Hong; Xie, Gong-Nan; Cattani, Carlo; Yang, Xiao-Jun. Solving Fokker-Planck Equations on Cantor Sets Using Local Fractional Decomposition Method. Abstr. Appl. Anal. 2014, Special Issue (2014), Article ID 396469, 6 pages. doi:10.1155/2014/396469. https://projecteuclid.org/euclid.aaa/1412607144


Export citation

References

  • T. D. Frank, “A Langevin approach for the microscopic dynamics of nonlinear Fokker-Planck equations,” Physica A: Statistical Mechanics and its Applications, vol. 301, no. 1–4, pp. 52–62, 2001.
  • A. Naert, R. Friedrich, and J. Peinke, “Fokker-Planck equation for the energy cascade in turbulence,” Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, vol. 56, no. 6, pp. 6719–6722, 1997.
  • M. Saad and T. Goudon, “On a Fokker-Planck equation arising in population dynamics,” Revista Matemática Complutense, vol. 11, no. 2, pp. 353–372, 1998.
  • D. H. Coule and K. O. Olynyk, “Chaotic universe dynamics using a Fokker-Planck equation,” Modern Physics Letters A, vol. 2, no. 11, pp. 811–817, 1987.
  • A. Tsurui and H. Ishikawa, “Application of the Fokker-Planck equation to a stochastic fatigue crack growth model,” Structural Safety, vol. 4, no. 1, pp. 15–29, 1986.
  • J. R. Nix, A. J. Sierk, H. Hofmann, F. Scheuter, and D. Vautherin, “Stationary Fokker-Planck equation applied to fission dynamics,” Nuclear Physics, Section A, vol. 424, no. 2, pp. 239–261, 1984.
  • D. B. Walton and J. Rafelski, “Equilibrium distribution of heavy quarks in Fokker-Planck dynamics,” Physical Review Letters, vol. 84, no. 1, pp. 31–34, 2000.
  • D. Sornette, “Fokker-Planck equation of distributions of financial returns and power laws,” Physica A: Statistical Mechanics and its Applications, vol. 290, no. 1-2, pp. 211–217, 2001.
  • A. Yoshimori and J. Korringa, “A Fokker-Planck equation for spin relaxation,” Physical Review, vol. 128, no. 3, pp. 1054–1060, 1962.
  • V. I. Kolobov, “Fokker-Planck modeling of electron kinetics in plasmas and semiconductors,” Computational Materials Science, vol. 28, no. 2, pp. 302–320, 2003.
  • C. P. Enz, “Fokker-Planck description of classical systems with application to critical dynamics,” Physica A: Statistical Mechanics and its Applications, vol. 89, no. 1, pp. 1–36, 1977.
  • A. Klar, P. Reuterswärd, and M. Seaïd, “A semi-lagrangian method for a fokker-planck equation describing fiber dynamics,” Journal of Scientific Computing, vol. 38, no. 3, pp. 349–367, 2009.
  • L. P. Kadanoff, Statistical Physics: Statics, Dynamics and Renormalization, World Scientific, 2000.
  • T. D. Frank and A. Daffertshofer, “Multivariate nonlinear Fokker-Planck equations and generalized thermostatistics,” Physica A: Statistical Mechanics and its Applications, vol. 292, no. 1–4, pp. 392–410, 2001.
  • M. Tatari, M. Dehghan, and M. Razzaghi, “Application of the Adomian decomposition method for the Fokker-Planck equation,” Mathematical and Computer Modelling, vol. 45, no. 5-6, pp. 639–650, 2007.
  • J. Biazar, K. Hosseini, and P. Gholamin, “Homotopy perturbation method Fokker-Planck equation,” International Mathematical Forum, vol. 3, no. 19, pp. 945–954, 2008.
  • J. Biazar, P. Gholamin, and K. Hosseini, “Variational iteration method for solving Fokker-Planck equation,” Journal of the Franklin Institute, vol. 347, no. 7, pp. 1137–1147, 2010.
  • K. Kikuchi, M. Yoshida, T. Maekawa, and H. Watanabe, “Metropolis Monte Carlo method as a numerical technique to solve the Fokker-Planck equation,” Chemical Physics Letters, vol. 185, no. 3-4, pp. 335–338, 1991.
  • A. Masud and L. A. Bergman, “Application of multi-scale finite element methods to the solution of the Fokker-Planck equation,” Computer Methods in Applied Mechanics and Engineering, vol. 194, no. 12–16, pp. 1513–1526, 2005.
  • P. Kumar and S. Narayanan, “Solution of Fokker-Planck equation by finite element and finite difference methods for nonlinear systems,” Sadhana, vol. 31, no. 4, pp. 445–461, 2006.
  • A. H. Bhrawy and A. S. Alofi, “The operational matrix of fractional integration for shifted Chebyshev polynomials,” Applied Mathematics Letters, vol. 26, pp. 25–31, 2013.
  • A. H. Bhrawy and M. Alshomrani, “A shifted Legendre spectral method for fractional-order multi-point boundary value problems,” Advances in Difference Equations, vol. 2012, pp. 1–19, 2012.
  • A. H. Bhrawy and D. Baleanu, “A spectral Legendre-Gauss-Lobatto collocation method for a space-fractional advection diffusion equations with variable coefficients,” Reports in Mathematical Physics, vol. 72, no. 2, pp. 219–233, 2013.
  • D. Baleanu, A. H. Bhrawy, and T. M. Taha, “Two efficient generalized Laguerre spectral algorithms for fractional initial value problems,” Abstract and Applied Analysis, vol. 2013, Article ID 546502, 10 pages, 2013.
  • A. H. Bhrawy and M. A. Alghamdi, “A shifted Jacobi-Gauss-Lobatto collocation method for solving nonlinear fractional Langevin equation involving two fractional orders in different intervals,” Boundary Value Problems, vol. 2012, no. 1, pp. 1–13, 2012.
  • J. Klafter, S. C. Lim, and R. Metzler, Fractional Dynamics: Recent Advances, World Scientific, 2012.
  • D. Baleanu, J. A. T. Machado, and A. C. Luo, Fractional Dynamics and Control, Springer, 2012.
  • V. E. Tarasov, Fractional Dynamics, Springer, 2010.
  • G. M. Zaslavsky, Hamiltonian Chaos and Fractional Dynamics, Oxford University Press, Oxford, UK, 2005.
  • E. Goldfain, “Fractional dynamics, Cantorian space-time and the gauge hierarchy problem,” Chaos, Solitons and Fractals, vol. 22, no. 3, pp. 513–520, 2004.
  • R. Metzler and T. F. Nonnenmacher, “Space- and time-fractional diffusion and wave equations, fractional Fokker-Planck equations, and physical motivation,” Chemical Physics, vol. 284, no. 1-2, pp. 67–90, 2002.
  • R. Metzler, E. Barkai, and J. Klafter, “Deriving fractional fokker-planck equations from a generalised master equation,” Europhysics Letters, vol. 46, no. 4, pp. 431–436, 1999.
  • S. A. El-Wakil and M. A. Zahran, “Fractional Fokker-Planck Equation,” Chaos, Solitons and Fractals, vol. 11, no. 5, pp. 791–798, 2000.
  • A. V. Chechkin, J. Klafter, and I. M. Sokolov, “Fractional Fokker-Planck equation for ultraslow kinetics,” Europhysics Letters, vol. 63, no. 3, pp. 326–332, 2003.
  • A. A. Stanislavsky, “Subordinated Brownian motion and its fractional Fokker-Planck equation,” Physica Scripta, vol. 67, no. 4, pp. 265–268, 2003.
  • K. Kim and Y. S. Kong, “Anomalous behaviors in fractional Fokker-Planck equation,” Journal of the Korean Physical Society, vol. 40, no. 6, pp. 979–982, 2002.
  • I. M. Sokolov, “Thermodynamics and fractional Fokker-Planck equations,” Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, vol. 63, no. 5, pp. 561111–561118, 2001.
  • V. E. Tarasov, “Fokker-Planck equation for fractional systems,” International Journal of Modern Physics B, vol. 21, no. 6, pp. 955–967, 2007.
  • F. Liu, V. Anh, and I. Turner, “Numerical solution of the space fractional Fokker-Planck equation,” Journal of Computational and Applied Mathematics, vol. 166, no. 1, pp. 209–219, 2004.
  • W. Deng, “Finite element method for the space and time fractional fokker-planck equation,” SIAM Journal on Numerical Analysis, vol. 47, no. 1, pp. 204–226, 2008.
  • Z. Odibat and S. Momani, “Numerical solution of Fokker-Planck equation with space- and time-fractional derivatives,” Physics Letters A: General, Atomic and Solid State Physics, vol. 369, no. 5-6, pp. 349–358, 2007.
  • X.-J. Yang, Advanced Local Fractional Calculus and Its Applications, World Science Publisher, New York, NY, USA, 2012.
  • X. -J. Yang, Local Fractional Functional Analysis and Its Applications, Asian Academic Publisher, Hong Kong, China, 2011.
  • X.-J. Yang, H. M. Srivastava, J. H. He, and D. Baleanu, “Cantor-type cylindrical-coordinate method for differential equations with local fractional derivatives,” Physics Letters A, vol. 377, no. 28–30, pp. 1696–1700, 2013.
  • K. M. Kolwankar and A. D. Gangal, “Local fractional Fokker-Planck equation,” Physical Review Letters, vol. 80, no. 2, pp. 214–217, 1998.
  • X.-J. Yang and D. Baleanu, “Local fractional variational iteration method for Fokker-Planck equation on a Cantor set,” Acta Universitaria, vol. 23, no. 2, pp. 3–8, 2013.
  • C. F. Liu, S. S. Kong, and S. J. Yuan, “Reconstructive schemes for variational iteration method within Yang-Laplace transform with application to fractal heat conduction problem,” Thermal Science, vol. 17, no. 3, pp. 715–721, 2013.
  • S. Q. Wang, Y. J. Yang, and H. K. Jassim, “Local fractional function decomposition method for solving inhomogeneous wave equations with local fractional derivative,” Abstract and Applied Analysis, vol. 2014, Article ID 176395, 7 pages, 2014.
  • C. G. Zhao, A. M. Yang, H. Jafari, and A. Haghbin, “The Yang-Laplace transform for solving the IVPs with local fractional derivative,” Abstract and Applied Analysis, vol. 2014, Article ID 386459, 5 pages, 2014.
  • A. M. Yang, Y. Z. Zhang, and Y. Long, “The Yang-Fourier transforms to heat-conduction in a semi-infinite fractal bar,” Thermal Science, vol. 17, no. 3, pp. 707–713, 2013.
  • X.-J. Yang, D. Baleanu, and W. P. Zhong, “Approximate solutions for diffusion equations on Cantor space-time,” Proceedings of the Romanian Academy A, vol. 14, no. 2, pp. 127–133, 2013.
  • X.-J. Yang, D. Baleanu, M. P. Lazarević, and M. S. Cajić, “Fractal boundary value problems for integral and differential equations with local fractional operators,” Thermal Science, 2013.
  • D. Baleanu, J. A. T. Machado, C. Cattani, M. C. Baleanu, and X.-J. Yang, “Local fractional variational iteration and decomposition methods for wave equation on Cantor sets within local fractional operators,” Abstract and Applied Analysis, vol. 2014, Article ID 535048, 6 pages, 2014. \endinput