## Abstract and Applied Analysis

- Abstr. Appl. Anal.
- Volume 2014, Special Issue (2014), Article ID 630840, 5 pages.

### On Generalized Fractional Integral Operators and the Generalized Gauss Hypergeometric Functions

Dumitru Baleanu and Praveen Agarwal

#### Abstract

A remarkably large number of fractional integral formulas involving the number of special functions, have been investigated by many authors. Very recently, Agarwal (National Academy Science Letters) gave some integral transform and fractional integral formulas involving the ${F}_{p}^{\left(\alpha ,\beta \right)}\left(\xb7\right)$. In this sequel, here, we aim to establish some image formulas by applying generalized operators of the fractional integration involving Appell’s function ${F}_{3}(\xb7)$ due to Marichev-Saigo-Maeda. Some interesting special cases of our main results are also considered.

#### Article information

**Source**

Abstr. Appl. Anal., Volume 2014, Special Issue (2014), Article ID 630840, 5 pages.

**Dates**

First available in Project Euclid: 6 October 2014

**Permanent link to this document**

https://projecteuclid.org/euclid.aaa/1412606729

**Digital Object Identifier**

doi:10.1155/2014/630840

**Mathematical Reviews number (MathSciNet)**

MR3200794

**Zentralblatt MATH identifier**

07022776

#### Citation

Baleanu, Dumitru; Agarwal, Praveen. On Generalized Fractional Integral Operators and the Generalized Gauss Hypergeometric Functions. Abstr. Appl. Anal. 2014, Special Issue (2014), Article ID 630840, 5 pages. doi:10.1155/2014/630840. https://projecteuclid.org/euclid.aaa/1412606729