Abstract and Applied Analysis

A New Numerical Algorithm for Two-Point Boundary Value Problems

Lihua Guo, Boying Wu, and Dazhi Zhang

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We present a new numerical algorithm for two-point boundary value problems. We first present the exact solution in the form of series and then prove that the n-term numerical solution converges uniformly to the exact solution. Furthermore, we establish the numerical stability and error analysis. The numerical results show the effectiveness of the proposed algorithm.

Article information

Source
Abstr. Appl. Anal., Volume 2014, Special Issue (2014), Article ID 302936, 6 pages.

Dates
First available in Project Euclid: 6 October 2014

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1412606418

Digital Object Identifier
doi:10.1155/2014/302936

Mathematical Reviews number (MathSciNet)
MR3230515

Zentralblatt MATH identifier
07022119

Citation

Guo, Lihua; Wu, Boying; Zhang, Dazhi. A New Numerical Algorithm for Two-Point Boundary Value Problems. Abstr. Appl. Anal. 2014, Special Issue (2014), Article ID 302936, 6 pages. doi:10.1155/2014/302936. https://projecteuclid.org/euclid.aaa/1412606418


Export citation

References

  • T. Aziz and M. Kumar, “A fourth-order finite-difference method based on non-uniform mesh for a class of singular two-point boundary value problems,” Journal of Computational and Applied Mathematics, vol. 136, no. 1-2, pp. 337–342, 2001.
  • M. Kumar and T. Aziz, “A non-uniform mesh finite difference method and its convergence for a class of singular two-point boundary value problems,” International Journal of Computer Mathematics, vol. 81, no. 12, pp. 1507–1512, 2004.
  • M. Kumar, “A second order spline finite difference method for singular two-point boundary value problems,” Applied Mathematics and Computation, vol. 142, no. 2-3, pp. 283–290, 2003.
  • M. Kumar, “Higher order method for singular boundary-value problems by using spline function,” Applied Mathematics and Computation, vol. 192, no. 1, pp. 175–179, 2007.
  • J. Rashidinia, Z. Mahmoodi, and M. Ghasemi, “Parametric spline method for a class of singular two-point boundary value problems,” Applied Mathematics and Computation, vol. 188, no. 1, pp. 58–63, 2007.
  • H. Yao and Y. Lin, “Solving singular boundary-value problems of higher even-order,” Journal of Computational and Applied Mathematics, vol. 223, no. 2, pp. 703–713, 2009.
  • Y. Lin, J. Niu, and M. Cui, “A numerical solution to nonlinear second order three-point boundary value problems in the reproducing kernel space,” Applied Mathematics and Computation, vol. 218, no. 14, pp. 7362–7368, 2012.
  • J. Niu, Y. Z. Lin, and C. P. Zhang, “Approximate solution of nonlinear multi-point boundary value problem on the half-line,” Mathematical Modelling and Analysis, vol. 17, no. 2, pp. 190–202, 2012.
  • C. Song, J. Li, and R. Gao, “Nonexistence of global solutions to the initial boundary value problem for the singularly perturbed sixth-order boussinesq -type equation,” Journal of Applied Mathematics, vol. 2014, Article ID 928148, 7 pages, 2014.
  • B. Orel and A. Perne, “Chebyshev-fourier spectral methods for nonperiodic boundary value problems,” Journal of Applied Mathematics, vol. 2014, Article ID 572694, 10 pages, 2014.
  • N. Aronszajn, “Theory of reproducing kernels,” Transactions of the American Mathematical Society, vol. 68, pp. 337–404, 1950.
  • M. G. Cui and Y. Z. Lin, Nonlinear Numerical Analysis in the Reproducing Kernel, Nova Science, New York, NY, USA, 2009.
  • R. K. Pandy and Singh. A. K., “On the convergence of second-order finite difference method for weakly regular singular boundary value problems,” International Journal of Computer Mathematics, vol. 85, no. 12, pp. 1807–1814, 2008.
  • A. E. Ebaid, “Exact solutions for a class of nonlinear singular two-point boundary value problems: the decomposition method,” Zeitschrift fur Naturforschung A: Journal of Physical Sciences, vol. 65, no. 3, pp. 145–150, 2010.
  • A. Ebaid, “A new analytical and numerical treatment for singular two-point boundary value problems via the Adomian decomposition method,” Journal of Computational and Applied Mathematics, vol. 235, no. 8, pp. 1914–1924, 2011.
  • S. M. El-Sayed, “Integral methods for computing solutions of a class of singular two-point boundary value problems,” Applied Mathematics and Computation, vol. 130, no. 2-3, pp. 235–241, 2002. \endinput