Abstract and Applied Analysis

On New Generalized Ostrowski Type Integral Inequalities

A. Qayyum, M. Shoaib, A. E. Matouk, and M. A. Latif

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

The Ostrowski inequality expresses bounds on the deviation of a function from its integral mean. The aim of this paper is to establish some new inequalities similar to the Ostrowski's inequality. The current paper obtains bounds for the deviation of a function from a combination of integral means over the end intervals covering the entire interval in terms of the norms of the second derivative of the function. Some new perturbed results are obtained. Application for cumulative distribution function is also discussed.

Article information

Source
Abstr. Appl. Anal., Volume 2014, Special Issue (2014), Article ID 275806, 8 pages.

Dates
First available in Project Euclid: 6 October 2014

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1412606203

Digital Object Identifier
doi:10.1155/2014/275806

Mathematical Reviews number (MathSciNet)
MR3214415

Zentralblatt MATH identifier
1248.76170

Citation

Qayyum, A.; Shoaib, M.; Matouk, A. E.; Latif, M. A. On New Generalized Ostrowski Type Integral Inequalities. Abstr. Appl. Anal. 2014, Special Issue (2014), Article ID 275806, 8 pages. doi:10.1155/2014/275806. https://projecteuclid.org/euclid.aaa/1412606203


Export citation

References

  • A. Ostrowski, “Uber die Absolutabweichung einer differenzierbaren Funktionen von ihren In-tegralimittelwert,” Commentarii Mathematici Helvetici, vol. 10, pp. 226–227, 1938.
  • G. V. Milovanović and J. E. Pecarić, “On generalization of the inequality of A. Ostrowski and some related applications,” Univerzitet u Beogradu PublIkacije ElektrotehnIckog Fakulteta, Serija Matematika i Fizika, vol. 544–576, pp. 155–158, 1976.
  • P. Cerone, “A new Ostrowski type inequality involving integral means over end intervals,” Tamkang Journal of Mathematics, vol. 33, no. 2, 2002.
  • X. L. Cheng, “Improvement of some Ostrowski-Grüss type inequalities,” Computers & Mathematics with Applications, vol. 42, pp. 109–114, 2001.
  • S. S. Dragomir and N. S. Barnett, “An Ostrowski type inequality for mappings whose sec- ond derivatives are bounded and applications RGMIA Research Report Collection,” Vaal University of Technology, vol. 1, pp. 67–76, 1999.
  • A. Sofo and S. S. Dragomir, “An inequality of Ostrowski type for twice differentiable mappings in term of the ${L}_{p}$ norm and applications,” Soochow Journal of Mathematics, vol. 27, no. 1, pp. 97–111, 2001.
  • G. V. Milovanović, “On some integral inequalities,” Univerzitet u Beogradu PublIkacije ElektrotehnIckog Fakulteta, Serija Matematika i Fizika, no. 498–541, pp. 119–124, 1975.
  • G. V. Milovanović and I. Z. Milovanović, “A generalization of certain results given by A. Os- trowski and A. Lupas,” Univerzitet u Beogradu PubiIkacije ElektrotehnIckog Fakulteta, Serija Matematika i Fizika, no. 634–677, pp. 62–69, 1979.
  • S. Hussain and A. Qayyum, “A generalized Ostrowski-Grüss type inequality for bounded differentiable mappings and its applications,” Journal of Inequalities and Applications, vol. 2013, article 1, 2013.
  • A. Qayyum and S. Hussain, “A new generalized Ostrowski Grüss type inequality and applications,” Applied Mathematics Letters, vol. 25, pp. 1875–1880, 2012.
  • J. E. Pecarić, “On the Čeby\^sev inequality,” Buletinul Stiintific si Tehnic al Institutului Politehnic “Traian Vuia” Timişoara, vol. 25, no. 39, pp. 5–9, 1980.
  • Z. Liu, “Some companions of an Ostrowski type inequality and applications,” Journal of Inequalities in Pure and Applied Mathematics, vol. 10, no. 2, pp. 1–12, 2009.
  • W. Liu, Y. Jiang, and A. Tuna, “A unified generalization of some quadrature rules and error bounds,” Applied Mathematics and Computation, vol. 219, pp. 4765–4774, 2013.
  • S. S. Dragomir and S. Wang, “An inequality Ostrowski-Grüss type and its applications to the estimation of error bounds for some special means and for some numerical quadrature rules,” Computers & Mathematics with Applications, vol. 33, pp. 15–22, 1997.
  • S. S. Dragomir and S. Wang, “A new inequality Ostrowski's type in ${L}_{p}$ norm,” Indian Journal of Mathematics, vol. 40, pp. 299–304, 1998.
  • S. S. Dragomir and S. Wang, “A new inequality Ostrowski.s type in ${L}_{1}$ norm and applications to some special means and some numerical quadrature rules,” Tamkang Journal of Mathematics, vol. 28, pp. 239–244, 1997.
  • S. S. Dragomir and S. Wang, “Applications of Ostrowski's inequality to the estimation of error bounds for some special means and for some numerical quadrature rules,” Applied Mathematics Letters, vol. 11, no. 1, pp. 105–109, 1998.
  • D. S. Mitrinović, J. E. Pecarić, and A. M. Fink, Inequalities for Functions and Their Integrals and Derivatives, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1994.
  • B. G. Pachpatte, “On Čeby\^sev-Grüss type inequalities via Pecaric's extention of the Mont- gomery identity,” Journal of Inequalities in Pure and Applied Mathematics, vol. 7, no. 1, article 108, 2006.
  • P. L. Čeby\^sev, “Sur lessčommentComment on ref. [1?]: Please provide the full name of these journals[1, 17?], if possible. expressions approximatives des integrales definies par les autres prises entre les memes limites,” Proc. Math. Soc. Charkov, vol. 2, pp. 93–98, 1882.
  • G. Grüss, “Über das Maximum des absoluten Betrages von $1/(b-a)\int_{a}^{b}f(x)g(x)dx-1/{(b-a)}^{2}\int_{a}^{b}f(x)dx\int_{a}^{b}g(x)dx$,” Mathematische Zeitschrift, vol. 39, no. 1, pp. 215–226, 1935. \endinput