Abstract and Applied Analysis
- Abstr. Appl. Anal.
- Volume 2014, Special Issue (2013), Article ID 453149, 11 pages.
Generalized Mutual Synchronization between Two Controlled Interdependent Networks
Quan Xu, Shengxian Zhuang, Dan Hu, Yingfeng Zeng, and Jian Xiao
Full-text: Open access
Abstract
This paper mainly focuses on the generalized mutual synchronization between two controlled interdependent networks. First, we propose the general model of controlled interdependent networks and with time-varying internetwork delays coupling. Then, by constructing Lyapunov functions and utilizing adaptive control technique, some sufficient conditions are established to ensure that the mutual synchronization errors between the state variables of networks and can asymptotically converge to zero. Finally, two numerical examples are given to illustrate the effectiveness of the theoretical results and to explore potential application in future smart grid. The simulation results also show how interdependent topologies and internetwork coupling delays influence the mutual synchronizability, which help to design interdependent networks with optimal mutual synchronizability.
Article information
Source
Abstr. Appl. Anal., Volume 2014, Special Issue (2013), Article ID 453149, 11 pages.
Dates
First available in Project Euclid: 6 October 2014
Permanent link to this document
https://projecteuclid.org/euclid.aaa/1412605767
Digital Object Identifier
doi:10.1155/2014/453149
Mathematical Reviews number (MathSciNet)
MR3208538
Zentralblatt MATH identifier
07022404
Citation
Xu, Quan; Zhuang, Shengxian; Hu, Dan; Zeng, Yingfeng; Xiao, Jian. Generalized Mutual Synchronization between Two Controlled Interdependent Networks. Abstr. Appl. Anal. 2014, Special Issue (2013), Article ID 453149, 11 pages. doi:10.1155/2014/453149. https://projecteuclid.org/euclid.aaa/1412605767
References
- D. J. Watts and S. H. Strogatz, “Collective dynamics of 'small-world9 networks,” Nature, vol. 393, no. 6684, pp. 440–442, 1998.
- S. H. Strogatz, “Exploring complex networks,” Nature, vol. 410, no. 6825, pp. 268–276, 2001.
- M. E. J. Newman, “The structure and function of complex networks,” Society for Industrial and Applied Mathematics, vol. 45, no. 2, pp. 167–256, 2003.Mathematical Reviews (MathSciNet): MR2010377
Zentralblatt MATH: 1029.68010
Digital Object Identifier: doi:10.1137/S003614450342480 - S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.-U. Hwang, “Complex networks: structure and dynamics,” Physics Reports, vol. 424, no. 4-5, pp. 175–308, 2006.Mathematical Reviews (MathSciNet): MR2193621
Digital Object Identifier: doi:10.1016/j.physrep.2005.10.009 - A.-L. Barabási, “Scale-free networks: a decade and beyond,” Science, vol. 325, no. 5939, pp. 412–413, 2009.Mathematical Reviews (MathSciNet): MR2548299
Zentralblatt MATH: 1226.91052
Digital Object Identifier: doi:10.1126/science.1173299 - A. Arenas, A. Díaz-Guilera, J. Kurths, Y. Moreno, and C. Zhou, “Synchronization in complex networks,” Physics Reports, vol. 469, no. 3, pp. 93–153, 2008.Mathematical Reviews (MathSciNet): MR2477097
Digital Object Identifier: doi:10.1016/j.physrep.2008.09.002 - M. Zhao, T. Zhou, B.-H. Wang, and W.-X. Wang, “Enhanced synchronizability by structural perturbations,” Physical Review E, vol. 72, no. 5, Article ID 057102, 4 pages, 2005.
- M. Zhao, T. Zhou, B.-H. Wang, G. Yan, H.-J. Yang, and W.-J. Bai, “Relations between average distance, heterogeneity and network synchronizability,” Physica A, vol. 371, no. 2, pp. 773–780, 2006.
- X. F. Wang and G. Chen, “Synchronization in scale-free dynamical networks: robustness and fragility,” IEEE Transactions on Circuits and Systems I, vol. 49, no. 1, pp. 54–62, 2002.
- B. Liu, X. Liu, G. Chen, and H. Wang, “Robust impulsive synchronization of uncertain dynamical networks,” IEEE Transactions on Circuits and Systems I, vol. 52, no. 7, pp. 1431–1441, 2005.Mathematical Reviews (MathSciNet): MR2167464
Digital Object Identifier: doi:10.1109/TCSI.2005.851708 - J.-L. Wang and H.-N. Wu, “Local and global exponential output synchronization of complex delayed dynamical networks,” Nonlinear Dynamics, vol. 67, no. 1, pp. 497–504, 2012.Mathematical Reviews (MathSciNet): MR2869217
Zentralblatt MATH: 1242.93008
Digital Object Identifier: doi:10.1007/s11071-011-9998-1 - Y. Shang, M. Chen, and J. Kurths, “Generalized synchronization of complex networks,” Physical Review E, vol. 80, no. 2, Article ID 027201, 4 pages, 2009.
- X. Wu and H. Lu, “Projective lag synchronization of the general complex dynamical networks with distinct nodes,” Communications in Nonlinear Science and Numerical Simulation, vol. 17, no. 11, pp. 4417–4429, 2012.Mathematical Reviews (MathSciNet): MR2930344
Zentralblatt MATH: 1248.93096
Digital Object Identifier: doi:10.1016/j.cnsns.2012.03.019 - M. J. Park, O. M. Kwon, J. H. Park, S. M. Lee, and E. J. Cha, “On synchronization criterion for coupled discrete-time neural networks with interval time-varying delays,” Neurocomputing, vol. 99, pp. 188–196, 2013.
- N. Mahdavi, M. B. Menhaj, J. Kurths, and J. Lu, “Fuzzy complex dynamical networks and its synchronization,” IEEE Transactions on Cybernetics, vol. 43, no. 2, pp. 648–659, 2013.
- Z. Li, G. Feng, and D. Hill, “Controlling complex dynamical networks with coupling delays to a desired orbit,” Physics Letters A, vol. 359, no. 1, pp. 42–46, 2006.Zentralblatt MATH: 1209.93136
- X. Li, X. Wang, and G. Chen, “Pinning a complex dynamical network to its equilibrium,” IEEE Transactions on Circuits and Systems I, vol. 51, no. 10, pp. 2074–2087, 2004.Mathematical Reviews (MathSciNet): MR2096915
Digital Object Identifier: doi:10.1109/TCSI.2004.835655 - J. Lu, D. W. C. Ho, J. Cao, and J. Kurths, “Single impulsive controller for globally exponential synchronization of dynamical networks,” Nonlinear Analysis, Real World Applications, vol. 14, no. 1, pp. 581–593, 2013.Mathematical Reviews (MathSciNet): MR2969857
Zentralblatt MATH: 1254.93133
Digital Object Identifier: doi:10.1016/j.nonrwa.2012.07.018 - C. Li, W. Sun, and J. Kurths, “Synchronization between two coupled complex networks,” Physical Review E, vol. 76, no. 4, Article ID 046204, 6 pages, 2007.
- A. I. Lerescu, N. Constandache, S. Oancea, and I. Grosu, “Collection of master-slave synchronized chaotic systems,” Chaos, Solitons and Fractals, vol. 22, no. 3, pp. 599–604, 2004.Zentralblatt MATH: 1096.93016
- H. Tang, L. Chen, J.-A. Lu, and C. K. Tse, “Adaptive synchronization between two complex networks with nonidentical topological structures,” Physica A, vol. 387, no. 22, pp. 5623–5630, 2008.
- X. Wu, W. X. Zheng, and J. Zhou, “Generalized outer synchronization between complex dynamical networks,” Chaos, vol. 19, no. 1, Article ID 013109, 9 pages, 2009.
- C. Jian-Rui, J. Li-Cheng, W. Jian-She, and W. Xiao-Hua, “Adaptive synchronization between two different complex networks with time-varying delay coupling,” Chinese Physics Letters, vol. 26, no. 6, Article ID 060505, 4 pages, 2009.
- Z. Li and X. Xue, “Outer synchronization of coupled networks using arbitrary coupling strength,” Chaos, vol. 20, no. 2, Article ID 023106, 7 pages, 2010.Mathematical Reviews (MathSciNet): MR2741894
- G. Wang, J. Cao, and J. Lu, “Outer synchronization between two nonidentical networks with circumstance noise,” Physica A, vol. 389, no. 7, pp. 1480–1488, 2010.
- Q. Bian and H. Yao, “Generalized synchronization between two complex dynamical networks with time-varying delay and nonlinear coupling,” Mathematical Problems in Engineering, vol. 2011, Article ID 978612, 15 pages, 2011.Mathematical Reviews (MathSciNet): MR2819738
Zentralblatt MATH: 1235.93104
Digital Object Identifier: doi:10.1155/2011/978612 - X. Wu and H. Lu, “Outer synchronization of uncertain general complex delayed networks with adaptive coupling,” Neurocomputing, vol. 82, pp. 157–166, 2012.
- S. Zheng, S. Wang, G. Dong, and Q. Bi, “Adaptive synchronization of two nonlinearly coupled complex dynamical networks with delayed coupling,” Communications in Nonlinear Science and Numerical Simulation, vol. 17, no. 1, pp. 284–291, 2012.Mathematical Reviews (MathSciNet): MR2826007
Zentralblatt MATH: 1239.93060
Digital Object Identifier: doi:10.1016/j.cnsns.2010.11.029 - Y. Wu, C. Li, Y. Wu, and J. Kurths, “Generalized synchronization between two different complex networks,” Communications in Nonlinear Science and Numerical Simulation, vol. 17, no. 1, pp. 349–355, 2012.Mathematical Reviews (MathSciNet): MR2826013
Zentralblatt MATH: 1243.93039
Digital Object Identifier: doi:10.1016/j.cnsns.2011.04.026 - S. V. Buldyrev, R. Parshani, G. Paul, H. E. Stanley, and S. Havlin, “Catastrophic cascade of failures in interdependent networks,” Nature, vol. 464, no. 7291, pp. 1025–1028, 2010.
- S.-W. Mei, Y.-Y. Wang, and L.-J. Chen, “Overviews and prospects of the cyber security of smart grid from the view of complex network theory,” High Voltage Engineering, vol. 37, no. 3, pp. 672–679, 2011 (Chinese).
- C. D. Brummitt, R. M. D'Souza, and E. A. Leicht, “Suppressing cascades of load in interdependent networks,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 12, pp. E680–E689, 2012.
- S. V. Buldyrev, N. W. Shere, and G. A. Cwilich, “Interdependent networks with identical degrees of mutually dependent nodes,” Physical Review E, vol. 83, no. 1, Article ID 016112, 8 pages, 2011.Mathematical Reviews (MathSciNet): MR2788208
Digital Object Identifier: doi:10.1103/PhysRevE.83.016112 - A. Vespignani, “Complex networks: the fragility of interdependency,” Nature, vol. 464, no. 7291, pp. 984–985, 2010.
- G. Dong, J. Gao, R. Du, L. Tian, H. E. Stanley, and S. Havlin, “Robustness of network of networks under targeted attack,” Physical Review E, vol. 87, no. 5, Article ID 052804, 11 pages, 2013.
- J. Gao, S. V. Buldyrev, H. E. Stanley, and S. Havlin, “Networks formed from interdependent networks,” Nature Physics, vol. 8, no. 1, pp. 40–48, 2012.
- J. Shao, S. V. Buldyrev, S. Havlin, and H. E. Stanley, “Cascade of failures in coupled network systems with multiple support-dependence relations,” Physical Review E, vol. 83, no. 3, Article ID 036116, 9 pages, 2011.Mathematical Reviews (MathSciNet): MR2788255
Digital Object Identifier: doi:10.1103/PhysRevE.83.036116 - J. Um, P. Minnhagen, and B. J. Kim, “Synchronization in interdependent networks,” Chaos, vol. 21, no. 2, Article ID 025106, 7 pages, 2011.
- H. Zhao, Y. Ma, S. Liu, and Y. Yue, “Fuzzy sliding mode variable structure control of chaotic power system with uncertainty,” Journal of Computational Information Systems, vol. 7, no. 6, pp. 1959–1966, 2011.
- W. Xiang and J. Xiao, “Finite-time stability and stabilisation for switched linear systems,” International Journal of Systems Science, vol. 44, no. 2, pp. 384–400, 2013.Mathematical Reviews (MathSciNet): MR3000754
Digital Object Identifier: doi:10.1080/00207721.2011.604738 - W. Xiang and J. Xiao, “Stability analysis and control synthesis of switched impulsive systems,” International Journal of Robust and Nonlinear Control, vol. 22, no. 13, pp. 1440–1459, 2012.
- W. Xiang, J. Xiao, and L. Han, “H$\infty $ control synthesis for short-time Markovian jump continuous time linear systems,” Circuits, Systems, and Signal Processing, vol. 32, no. 6, pp. 2799–2820, 2013.Mathematical Reviews (MathSciNet): MR3122255
Digital Object Identifier: doi:10.1007/s00034-013-9594-3 - W. Xiang, J. Xiao, and M. N. Iqbal, “H$\infty $ control for switched fuzzy systems via dynamic output feedback: hybrid and switched approaches,” Communications in Nonlinear Science and Numerical Simulation, vol. 18, no. 6, pp. 1499–1514, 2013.Mathematical Reviews (MathSciNet): MR3016902
Digital Object Identifier: doi:10.1016/j.cnsns.2012.10.003 - W. Xiang and J. Xiao, “H$\infty $ control synthesis of switched discrete-time fuzzy systems via hybrid approach, Optimal Control,” Applications and Methods, vol. 34, no. 6, pp. 635–655, 2013. \endinputMathematical Reviews (MathSciNet): MR3125933
- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- Outer Synchronization of Complex Networks with Nondelayed and Time-Varying Delayed Couplings via Pinning Control or Impulsive Control
Feng, Jianwen, Sheng, Sa, Tang, Ze, and Zhao, Yi, Abstract and Applied Analysis, 2014 - Projective Lag Synchronization of Delayed Neural Networks Using Intermittent Linear State Feedback
Huang, Junjian, Li, Chuandong, Huang, Tingwen, Li, Huaqing, and Peng, Mei, Abstract and Applied Analysis, 2013 - Exponential Synchronization of Two Nonlinearly Coupled Complex Networks with Time-Varying Delayed Dynamical Nodes
Shao, Wei, Abstract and Applied Analysis, 2014
- Outer Synchronization of Complex Networks with Nondelayed and Time-Varying Delayed Couplings via Pinning Control or Impulsive Control
Feng, Jianwen, Sheng, Sa, Tang, Ze, and Zhao, Yi, Abstract and Applied Analysis, 2014 - Projective Lag Synchronization of Delayed Neural Networks Using Intermittent Linear State Feedback
Huang, Junjian, Li, Chuandong, Huang, Tingwen, Li, Huaqing, and Peng, Mei, Abstract and Applied Analysis, 2013 - Exponential Synchronization of Two Nonlinearly Coupled Complex Networks with Time-Varying Delayed Dynamical Nodes
Shao, Wei, Abstract and Applied Analysis, 2014 - Projective Synchronization Analysis of Drive-Response Coupled Dynamical Network with Multiple Time-Varying Delays via Impulsive Control
Zheng, Song, Abstract and Applied Analysis, 2014 - Robust Synchronization Criterion for Coupled Stochastic Discrete-Time Neural Networks with Interval Time-Varying Delays, Leakage Delay, and Parameter Uncertainties
Park, M. J., Kwon, O. M., Park, Ju H., Lee, S. M., and Cha, E. J., Abstract and Applied Analysis, 2012 - Delay-Dependent Synchronization for Complex Dynamical Networks with Interval Time-Varying and Switched Coupling Delays
Botmart, T. and Niamsup, P., Journal of Applied Mathematics, 2012 - Synchronization of Coupled Networks with Mixed Delays by Intermittent Control
Yuan, Kun, Cao, Jinde, and Fei, Shumin, Journal of Applied Mathematics, 2012 - Adaptive Synchronization of Complex Networks with Mixed Probabilistic Coupling Delays via Pinning Control
Wang, Jian-An, Journal of Applied Mathematics, 2014 - Adaptive Impulsive Observer for Outer Synchronization of Delayed Complex Dynamical Networks with Output Coupling
Zheng, Song, Journal of Applied Mathematics, 2014 - Cluster Anti-Synchronization of Complex Networks with Nonidentical Dynamical
Nodes
Wang, Shuguo, He, Chunyuan, and Yao, Hongxing, Journal of Applied Mathematics, 2012