Abstract and Applied Analysis

Control of Multiagent Systems: A Stochastic Pinning Viewpoint

Guoliang Wang

Full-text: Open access

Abstract

A stochastic pinning approach for multiagent systems is developed, which guarantees such systems being almost surely stable. It is seen that the pinning is closely related to being a Bernoulli variable. It has been proved for the first time that a series of systems can be stabilized by a Brownian noise perturbation in terms of a pinning scheme. A new terminology named “stochastic pinning control” is introduced to describe the given pinning algorithm. Additionally, two general cases that the expectation of the Bernoulli variable with bounded uncertainty or being unknown are studied. Finally, two simulation examples are provided to demonstrate the effectiveness of the proposed methods.

Article information

Source
Abstr. Appl. Anal., Volume 2014, Special Issue (2013), Article ID 985356, 10 pages.

Dates
First available in Project Euclid: 6 October 2014

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1412605756

Digital Object Identifier
doi:10.1155/2014/985356

Mathematical Reviews number (MathSciNet)
MR3198280

Citation

Wang, Guoliang. Control of Multiagent Systems: A Stochastic Pinning Viewpoint. Abstr. Appl. Anal. 2014, Special Issue (2013), Article ID 985356, 10 pages. doi:10.1155/2014/985356. https://projecteuclid.org/euclid.aaa/1412605756


Export citation

References

  • R. Olfati-Saber, “Flocking for multi-agent dynamic systems: algorithms and theory,” IEEE Transactions on Automatic Control, vol. 51, no. 3, pp. 401–420, 2006.
  • M. Ji, G. Ferrari-Trecate, G. Egerstedt, and A. Buffa, “Containment control in mobile networks,” IEEE Transactions on Automatic Control, vol. 53, no. 8, pp. 1972–1975, 2008.
  • D. Dimarogonas, P. Tsiotras, and K. Kyriakopoulos, “Leader-follower cooperative attitude control of multiple rigid bodies,” Systems & Control Letters, vol. 58, no. 6, pp. 429–435, 2009.
  • Y. C. Cao, D. Stuart, W. Ren, and Z. Y. Meng, “Distributed containment control for multiple autonomous vehicles with double-integrator dynamics: algorithms and experiments,” IEEE Transactions on Control Systems Technology, vol. 19, no. 4, pp. 929–938, 2011.
  • Z. Meng, W. Ren, and Z. You, “Distributed finite-time attitude containment control for multiple rigid bodies,” Automatica, vol. 46, no. 12, pp. 2092–2099, 2010.
  • Y. Lou and Y. Hong, “Target containment control of multi-agent systems with random switching interconnection topologies,” Automatica, vol. 48, no. 5, pp. 1165–1175, 2012.
  • X. F. Wang and G. R. Chen, “Complex networks: small-world, scale-free and beyond,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 3, no. 1, pp. 6–20, 2003.
  • Y. Hatano and M. Mesbahi, “Agreement over random networks,” IEEE Transactions on Automatic Control, vol. 50, no. 11, pp. 1867–1872, 2005.
  • M. Porfiri and D. J. Stilwell, “Consensus seeking over random weighted directed graphs,” IEEE Transactions on Automatic Control, vol. 52, no. 9, pp. 1767–1773, 2007.
  • W. W. Yu, G. R. Chen, Z. D. Wang, and W. Yang, “Distributed consensus filtering in sensor networks,” IEEE Transactions on Systems, Man, and Cybernetics B: Cybernetics, vol. 39, no. 6, pp. 1568–1577, 2009.
  • D. G. Xu and Z. F. Su, “Synchronization criterions and pinning control of general complex networks with time delay,” Applied Mathematics and Computation, vol. 215, no. 4, pp. 1593–1608, 2009.
  • P. Eröds and A. Rényi, “On random graphs. I.,” Publicationes Mathematicae Debrecen, vol. 6, pp. 290–297, 1959.
  • D. J. Watts and S. H. Strogatz, “Collective dynamics of “small-world” networks,” Nature, vol. 393, no. 6684, pp. 440–442, 1998.
  • A.-L. Barabási and R. Albert, “Emergence of scaling in random networks,” Science, vol. 286, no. 5439, pp. 509–512, 1999.
  • Y. Tang and W. K. Wong, “Distributed synchronization of coupled neural networks via randomly occurring control,” IEEE Transactions on Neural Networks and Learning Systems, vol. 24, no. 3, pp. 435–447, 2013.
  • Y. Tang, H. J. Gao, W. Zou, and J. Kurths, “Distributed synchronization in networks of agent systems with nonlinearities and random switchings,” IEEE Transactions on Cybernetics, vol. 43, no. 1, pp. 358–370, 2013.
  • X. F. Wang and G. R. Chen, “Pinning control of scale-free dynamical networks,” Physica A: Statistical Mechanics and Its Applications, vol. 310, no. 3-4, pp. 521–531, 2002.
  • X. Li, X. F. Wang, and G. R. Chen, “Pinning a complex dynamical network to its equilibrium,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 51, no. 10, pp. 2074–2087, 2004.
  • J. H. Lü and G. R. Chen, “A time-varying complex dynamical network model and its controlled synchronization criteria,” IEEE Transactions on Automatic Control, vol. 50, no. 6, pp. 841–846, 2005.
  • J. Zhou, J. A. Lu, and J. H. Lü, “Adaptive synchronization of an uncertain complex dynamical network,” IEEE Transactions on Automatic Control, vol. 51, no. 4, pp. 652–656, 2006.
  • Y. Y. Wu, W. Wei, G. Y. Li, and J. Xiang, “Pinning control of uncertain complex networks to a homogeneous orbit,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 56, no. 3, pp. 235–239, 2009.
  • T. Liu, J. Zhao, and D. J. Hill, “Synchronization of complex delayed dynamical networks with nonlinearly coupled nodes,” Chaos, Solitons & Fractals, vol. 40, no. 3, pp. 1506–1519, 2009.
  • P. DeLellis, M. diBernardo, and F. Garofalo, “Novel decentralized adaptive strategies for the synchronization of complex networks,” Automatica, vol. 45, no. 5, pp. 1312–1318, 2009.
  • Y. Tang, H. Gao, W. Zou, and J. Kurths, “Pinning noise-induced stochastic resonance,” Physical Review E, vol. 87, no. 6, Article ID 062920, 2013.
  • Y. Tang, Z. Wang, H. Gao, S. Swift, and J. Kurths, “A constrained evolutionary computation method for detecting controlling regions of cortical networks,” IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 9, no. 6, pp. 1569–1581, 2012.
  • H. Y. Li, H. H. Liu, H. J. Gao, and P. Shi, “Reliable fuzzy control for active suspension systems with actuator delay and fault,” IEEE Transactions on Fuzzy Systems, vol. 20, no. 2, pp. 342–357, 2012.
  • H. Y. Li, J. Y. Yu, C. Hilton, and H. H. Liu, “Adaptive sliding-mode control for nonlinear active suspension vehicle systems using T-S fuzzy approach,” IEEE Transactions on Industrial Electronics, vol. 60, no. 8, pp. 3328–3338, 2013.
  • T. P. Chen, X. W. Liu, and W. L. Lu, “Pinning complex networks by a single controller,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 54, no. 6, pp. 1317–1326, 2007.
  • H. Y. Li, X. J. Jing, and H. R. Karimi, “Output-feedback-based control for vehicle suspension systems with control delay,” IEEE Transactions on Industrial Electronics, vol. 61, no. 1, pp. 436–446, 2014. \endinput