Abstract and Applied Analysis

Cluster Projective Synchronization of Fractional-Order Complex Network via Pinning Control

Li-xin Yang, Wan-sheng He, Fan-di Zhang, and Jin-ping Jia

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

Synchronization is the strongest form of collective phenomena in complex systems of interacting components. In this paper, the problem of cluster projective synchronization of complex networks with fractional-order nodes based on the fractional-order differential equation stability theory is investigated. Only the nodes in one community which have direct connections to the nodes in other communities are controlled. Some sufficient synchronization conditions are derived via pinning control. Numerical simulations are provided to show the effectiveness of the theoretical results.

Article information

Source
Abstr. Appl. Anal., Volume 2014, Special Issue (2014), Article ID 314742, 6 pages.

Dates
First available in Project Euclid: 2 October 2014

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1412278521

Digital Object Identifier
doi:10.1155/2014/314742

Mathematical Reviews number (MathSciNet)
MR3212411

Zentralblatt MATH identifier
07022148

Citation

Yang, Li-xin; He, Wan-sheng; Zhang, Fan-di; Jia, Jin-ping. Cluster Projective Synchronization of Fractional-Order Complex Network via Pinning Control. Abstr. Appl. Anal. 2014, Special Issue (2014), Article ID 314742, 6 pages. doi:10.1155/2014/314742. https://projecteuclid.org/euclid.aaa/1412278521


Export citation

References

  • S. H. Strogatz, “Exploring complex networks,” Nature, vol. 410, no. 6825, pp. 268–276, 2001.
  • A. B. Horne, T. C. Hodgman, H. D. Spence, and A. R. Dalby, “Constructing an enzyme-centric view of metabolism,” Bioinformatics, vol. 20, no. 13, pp. 2050–2055, 2004.
  • S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.-U. Hwang, “Complex networks: structure and dynamics,” Physics Reports, vol. 424, no. 4-5, pp. 175–308, 2006.
  • J. Hu, Z. Wang, B. Shen, and H. Gao, “Gain-constrained recursive filtering with stochastic nonlinearities and probabilistic sensor delays,” IEEE Transactions on Signal Processing, vol. 61, no. 5, pp. 1230–1238, 2013.
  • J. Hu, Z. Wang, H. Dong, and H. Gao, “Recent advances on recursive filtering and sliding mode design for networked nonlinear stochastic systems: a survey,” Mathematical Problems in Engineering, vol. 2013, Article ID 646059, 12 pages, 2013.
  • J. Lü, X. Yu, and G. Chen, “Chaos synchronization of general complex dynamical networks,” Physica A, vol. 334, no. 1-2, pp. 281–302, 2004.
  • X. Wang and G. Chen, “Synchronization in small-world dynamical networks,” International Journal of Bifurcation and Chaos, vol. 12, no. 1, pp. 187–192, 2002.
  • M. Yang, Y. Liu, Z. You, and P. Sheng, “Global synchronization for directed complex networks,” Nonlinear Analysis: Real World Applications, vol. 11, no. 3, pp. 2127–2135, 2010.
  • K. Wang, X. Fu, and K. Li, “Cluster synchronization in community networks with nonidentical nodes,” Chaos, vol. 19, no. 2, Article ID 023106, 2009.
  • C. Li and G. Chen, “Synchronization in general complex dynamical networks with coupling delays,” Physica A, vol. 343, pp. 263–278, 2004.
  • S. Zheng, G. Dong, and Q. Bi, “Impulsive synchronization of complex networks with non-delayed and delayed coupling,” Physics Letters A, vol. 373, no. 46, pp. 4255–4259, 2009.
  • J.-W. Wang, Q. Ma, L. Zeng, and M. S. Abd-Elouahab, “Mixed outer synchronization of coupled complex networks with time-varying coupling delay,” Chaos, vol. 21, no. 1, Article ID 013121, 2011.
  • M. Ayati and A. Khaki-Sedigh, “Adaptive control of nonlinear in parameters chaotic system via Lyapunov exponents placement,” Chaos, Solitons and Fractals, vol. 41, no. 4, pp. 1980–1986, 2009.
  • X.-Y. Wang and J.-M. Song, “Synchronization of the fractional order hyperchaos Lorenz systems with activation feedback control,” Communications in Nonlinear Science and Numerical Simulation, vol. 14, no. 8, pp. 3351–3357, 2009.
  • J. Hu, Z. Wang, B. Shen, and H. Gao, “Quantised recursive filtering for a class of nonlinear systems with multiplicative noises and missing measurements,” International Journal of Control, vol. 86, no. 4, pp. 650–663, 2013.
  • J. Hu, D. Chen, and J. Du, “State estimation for a class of discrete nonlinear systems with randomly occurring uncertainties and distributed sensor delays,” International Journal of General Systems, vol. 43, no. 3-4, pp. 387–401, 2014.
  • J. Hu, Z. Wang, and H. Gao, “Recursive filtering with random parameter matrices, multiple fading measurements and correlated noises,” Automatica, vol. 49, no. 11, pp. 3440–3448, 2013.
  • L.-X. Yang and J. Jiang, “Adaptive synchronization of drive-response fractional-order complex dynamical networks with uncertain parameters,” Communications in Nonlinear Science and Numerical Simulation, vol. 19, no. 5, pp. 1496–1506, 2014.
  • W. Yu, G. Chen, and J. Lü, “On pinning synchronization of complex dynamical networks,” Automatica, vol. 45, no. 2, pp. 429–435, 2009.
  • M. Porfiri and F. Fiorilli, “Experiments on node-to-node pinning control of Chua's circuits,” Physica D, vol. 239, no. 8, pp. 454–464, 2010.
  • L.-X. Yang and J. Jiang, “Hybrid projective synchronization of fractional-order chaotic systems with time delay,” Discrete Dynamics in Nature and Society, vol. 2013, Article ID 459801, 8 pages, 2013.
  • D. Matignon, “Stability results of fractional differential equations with applications to control processing,” in Proceedings of the IEEE-SMC International Association for Mathematics and Computers in Simulation (IMACS '96), pp. 963–968, Lille, France, 1996.
  • K. Li, M. Small, and X. Fu, “Generation of clusters in complex dynamical networks via pinning control,” Journal of Physics A: Mathematical and Theoretical, vol. 41, no. 50, Article ID 505101, 2008.
  • W. Guo, “Lag synchronization of complex networks via pinning control,” Nonlinear Analysis: Real World Applications, vol. 12, no. 5, pp. 2579–2585, 2011. \endinput