Abstract and Applied Analysis

Exponential Synchronization of Two Nonlinearly Coupled Complex Networks with Time-Varying Delayed Dynamical Nodes

Wei Shao

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

This paper investigates the exponential synchronization between two nonlinearly coupled complex networks with time-varying delay dynamical nodes. Based on the Lyapunov stability theory, some criteria for the exponential synchronization are derived with adaptive control method. Moreover, the presented results here can also be applied to complex dynamical networks with single time delay case. Finally, numerical analysis and simulations for two nonlinearly coupled networks which are composed of the time-delayed Lorenz chaotic systems are given to demonstrate the effectiveness and feasibility of the proposed complex network synchronization scheme.

Article information

Source
Abstr. Appl. Anal., Volume 2014, Special Issue (2014), Article ID 649350, 9 pages.

Dates
First available in Project Euclid: 2 October 2014

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1412278519

Digital Object Identifier
doi:10.1155/2014/649350

Mathematical Reviews number (MathSciNet)
MR3212441

Zentralblatt MATH identifier
07022825

Citation

Shao, Wei. Exponential Synchronization of Two Nonlinearly Coupled Complex Networks with Time-Varying Delayed Dynamical Nodes. Abstr. Appl. Anal. 2014, Special Issue (2014), Article ID 649350, 9 pages. doi:10.1155/2014/649350. https://projecteuclid.org/euclid.aaa/1412278519


Export citation

References

  • D. J. Watts and S. H. Strogatz, “Collective dynamics of 'small-world9 networks,” Nature, vol. 393, no. 6684, pp. 440–442, 1998.
  • A. L. Barabási and R. Albert, “Emergence of scaling in random networks,” Science, vol. 286, no. 5439, pp. 509–512, 1999.
  • W. Sun, “Random walks on generalized Koch networks,” Physica Scripta, vol. 88, no. 4, Article ID 045006, 2013.
  • C. W. Wu, Synchronization in Complex Networks of Nonlinear Dynamical Systems, World Scientific, Singapore, 2007.
  • S. Cai, J. Hao, Q. He, and Z. Liu, “Exponential synchronization of complex delayed dynamical networks via pinning periodically intermittent control,” Physics Letters A: General, Atomic and Solid State Physics, vol. 375, no. 19, pp. 1965–1971, 2011.
  • W. Sun, Y. Yang, C. Li, and Z. Liu, “Synchronization inside complex dynamical networks with double time-delays and nonlinear inner-coupling functions,” International Journal of Modern Physics B, vol. 25, pp. 1531–1541, 2011.
  • W. Sun, J. Zhang, and C. Li, “Synchronization analysis of two coupled complex networks with time delays,” Discrete Dynamics in Nature and Society, vol. 2011, Article ID 209321, 12 pages, 2011.
  • Q. Bian and H. Yao, “Generalized synchronization between two complex dynamical networks with time-varying delay and nonlinear coupling,” Mathematical Problems in Engineering, vol. 2011, Article ID 978612, 15 pages, 2011.
  • S. Zheng, “Exponential synchronization of two nonlinearly non-delayed and delayed coupled complex dynamical networks,” Physica Scripta, vol. 85, no. 1, Article ID 015003, 2012.
  • X. Wu, C. Xu, J. Feng, Y. Zhao, and X. Zhou, “Generalized projective synchronization between two different neural networks with mixed time delays,” Discrete Dynamics in Nature and Society, vol. 2012, Article ID 153542, 19 pages, 2012.
  • X. Li, X. Wang, and G. Chen, “Pinning a complex dynamical network to its equilibrium,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 51, no. 10, pp. 2074–2087, 2004.
  • T. Chen, X. Liu, and W. Lu, “Pinning complex networks by a single controller,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 54, no. 6, pp. 1317–1326, 2007.
  • P. DeLellis, M. Di Bernardo, and M. Porfiri, “Pinning control of complex networks via edge snapping,” Chaos, vol. 21, no. 3, Article ID 033119, 2011.
  • S. Zheng and Q. Bi, “Synchronization analysis of complex dynamical networks with delayed and non-delayed coupling based on pinning control,” Physica Scripta, vol. 84, no. 2, Article ID 025008, 2011.
  • J. Lu and J. Cao, “Adaptive synchronization of uncertain dynamical networks with delayed coupling,” Nonlinear Dynamics, vol. 53, no. 1-2, pp. 107–115, 2008.
  • S. Zheng, S. Wang, G. Dong, and Q. Bi, “Adaptive synchronization of two nonlinearly coupled complex dynamical networks with delayed coupling,” Communications in Nonlinear Science and Numerical Simulation, vol. 17, no. 1, pp. 284–291, 2012.
  • W. Yu, P. DeLellis, G. Chen, M. di Bernardo, and J. Kurths, “Distributed adaptive control of synchronization in complex networks,” IEEE Transactions on Automatic Control, vol. 57, no. 8, pp. 2153–2158, 2012.
  • M. Xiao, W. Sun, and F. Chen, “Synchronization between two discrete-time networks with mutual couplings,” Abstract and Applied Analysis, vol. 2013, Article ID 167198, 6 pages, 2013.
  • Y. Sun, W. Li, and J. Ruan, “Generalized outer synchronization between complex dynamical networks with time delay and noise perturbation,” Communications in Nonlinear Science and Numerical Simulation, vol. 18, no. 4, pp. 989–998, 2013.
  • W. Sun and S. Li, “Generalized outer synchronization between two uncertain dynamical networks,” Nonlinear Dynamics, 2014.
  • J. Zhou, L. Xiang, and Z. Liu, “Synchronization in complex delayed dynamical networks with impulsive effects,” Physica A: Statistical Mechanics and Its Applications, vol. 384, no. 2, pp. 684–692, 2007.
  • G. Zhang, Z. Liu, and Z. Ma, “Synchronization of complex dynamical networks via impulsive control,” Chaos, vol. 17, no. 4, Article ID 043126, 9 pages, 2007.
  • S. Zheng, “Projective synchronization in a driven-response dynamical network with coupling time-varying delay,” Nonlinear Dynamics, vol. 69, no. 3, pp. 1429–1438, 2012.
  • S. Zheng and W. Shao, “Mixed outer synchronization of dynamical networks with nonidentical nodes and output coupling,” Nonlinear Dynamics, vol. 73, no. 4, pp. 2343–2352, 2013.
  • S. Zheng, “Adaptive impulsive observer for outer Synchronization of delayed complex dynamical networks with output coupling,” Journal of Applied Mathematics, vol. 2014, Article ID 450193, 11 pages, 2014.
  • J. Xu and S. Zheng, “Weak projective synchronization in drive-response dynamical networks with time-varying delay and parameter mismatch,” Journal of Applied Mathematics, Article ID 356924, 8 pages, 2014.
  • S. Cai, Z. Liu, F. Xu, and J. Shen, “Periodically intermittent controlling complex dynamical networks with time-varying delays to a desired orbit,” Physics Letters. A, vol. 373, no. 42, pp. 3846–3854, 2009.
  • S. Cai, Q. He, J. Hao, and Z. Liu, “Exponential synchronization of complex networks with nonidentical time-delayed dynamical nodes,” Physics Letters. A, vol. 374, no. 25, pp. 2539–2550, 2010.
  • J. Mei, M. Jiang, X. Wang, J. Han, and S. Wang, “Finite-time synchronization of drive-response systems via periodically intermittent adaptive control,” Journal of the Franklin Institute: Engineering and Applied Mathematics, vol. 351, no. 5, pp. 2691–2710, 2014.
  • C. P. Li, W. G. Sun, and J. Kurths, “Synchronization between two coupled complex networks,” Physical Review E, vol. 76, Article ID 046204, 2007.
  • H. Tang, L. Chen, J. A. Lu, and C. K. Tse, “Adaptive synchronization between two complex networks with nonidentical topological structures,” Physica A: Statistical Mechanics and Its Applications, vol. 387, no. 22, pp. 5623–5630, 2008.
  • Y. Li, Z. R. Liu, and J. B. Zhang, “Synchronization between different networks,” Chinese Physics Letters, vol. 25, no. 3, pp. 874–877, 2008.
  • X. Wu, W. X. Zheng, and J. Zhou, “Generalized outer synchronization between complex dynamical networks,” Chaos, vol. 19, no. 1, Article ID 013109, 9 pages, 2009.
  • C. Li, C. Xu, W. Sun, J. Xu, and J. Kurths, “Outer synchronization of coupled discrete-time networks,” Chaos, vol. 19, no. 1, Article ID 013106, 7 pages, 2009.
  • S. Zheng, G. Dong, and Q. Bi, “Impulsive synchronization of complex networks with non-delayed and delayed coupling,” Physics Letters A: General, Atomic and Solid State Physics, vol. 373, no. 46, pp. 4255–4259, 2009.
  • Y. Yang and J. Cao, “Exponential synchronization of the complex dynamical networks with a coupling delay and impulsive effects,” Nonlinear Analysis: Real World Applications, vol. 11, no. 3, pp. 1650–1659, 2010.
  • L. Huang, Z. Wang, Y. Wang, and Y. Zuo, “Synchronization analysis of delayed complex networks via adaptive time-varying coupling strengths,” Physics Letters A, vol. 373, no. 43, pp. 3952–3958, 2009.
  • J. Lu and J. Cao, “Synchronization-based approach for parameters identification in delayed chaotic neural networks,” Physica A: Statistical Mechanics and Its Applications, vol. 382, no. 2, pp. 672–682, 2007. \endinput