Abstract and Applied Analysis

New Scheme of Finite Difference Heterogeneous Multiscale Method to Solve Saturated Flow in Porous Media

Fulai Chen and Li Ren

Full-text: Open access

Abstract

A new finite difference scheme, the development of the finite difference heterogeneous multiscale method (FDHMM), is constructed for simulating saturated water flow in random porous media. In the discretization framework of FDHMM, we follow some ideas from the multiscale finite element method and construct basic microscopic elliptic models. Tests on a variety of numerical experiments show that, in the case that only about a half of the information of the whole microstructure is used, the constructed scheme gives better accuracy at a much lower computational time than FDHMM for the problem of aquifer response to sudden change in reservoir level and gives comparable accuracy at a much lower computational time than FDHMM for the weak drawdown problem.

Article information

Source
Abstr. Appl. Anal., Volume 2014, Special Issue (2013), Article ID 575298, 19 pages.

Dates
First available in Project Euclid: 2 October 2014

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1412277417

Digital Object Identifier
doi:10.1155/2014/575298

Mathematical Reviews number (MathSciNet)
MR3178875

Zentralblatt MATH identifier
07022641

Citation

Chen, Fulai; Ren, Li. New Scheme of Finite Difference Heterogeneous Multiscale Method to Solve Saturated Flow in Porous Media. Abstr. Appl. Anal. 2014, Special Issue (2013), Article ID 575298, 19 pages. doi:10.1155/2014/575298. https://projecteuclid.org/euclid.aaa/1412277417


Export citation

References

  • B. B. Dykaar and P. K. Kitanidis, “Determination of the effective hydraulic conductivity for heterogeneous porous media using a numerical spectral approach 2: results,” Water Resources Research, vol. 28, no. 4, pp. 1167–1178, 1992.
  • T. Y. Hou and X.-H. Wu, “A multiscale finite element method for elliptic problems in composite materials and porous media,” Journal of Computational Physics, vol. 134, no. 1, pp. 169–189, 1997.
  • T. Y. Hou, X.-H. Wu, and Z. Cai, “Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients,” Mathematics of Computation, vol. 68, no. 227, pp. 913–943, 1999.
  • W. E and B. Engquist, “The heterogeneous multiscale methods,” Communications in Mathematical Sciences, vol. 1, no. 1, pp. 87–132, 2003.
  • Y. Efendiev and A. Pankov, “Numerical homogenization of nonlinear random parabolic operators,” Multiscale Modeling & Simulation, vol. 2, no. 2, pp. 237–268, 2004.
  • I. Babuška, “Solution of interface problems by homogenization. I,” SIAM Journal on Mathematical Analysis, vol. 7, no. 5, pp. 603–634, 1976.
  • I. Babuška, “Homogenization and its application. Mathematical and computational problems,” in Numerical Solution of Partial Differential Equations. III, B. Hubbard, Ed., pp. 89–116, Academic Press, New York, NY, USA, 1976.
  • I. Babuška, “Solution of interface problems by homogenization. III,” SIAM Journal on Mathematical Analysis, vol. 8, no. 6, pp. 923–937, 1977.
  • L. J. Durlofsky, Y. Efendiev, and V. Ginting, “An adaptive local-global multiscale finite volume element method for two-phase flow simulations,” Advances in Water Resources, vol. 30, no. 3, pp. 576–588, 2007.
  • S. Ye, Y. Xue, and C. Xie, “Application of the multiscale finite element method to flow in heterogeneous porous media,” Water Resources Research, vol. 40, Article ID W09202, 2004.
  • Z. Chen and T. Y. Hou, “A mixed multiscale finite element method for elliptic problems with oscillating coefficients,” Mathematics of Computation, vol. 72, no. 242, pp. 541–576, 2003.
  • X. He and L. Ren, “Finite volume multiscale finite element method for solving the groundwater flow problems in heterogeneous porous media,” Water Resources Research, vol. 41, no. 10, Article ID W10417, 2005.
  • W. E, P. Ming, and P. Zhang, “Analysis of the heterogeneous multiscale method for elliptic homogenization problems,” Journal of the American Mathematical Society, vol. 18, no. 1, pp. 121–156, 2005.
  • P. Ming and P. Zhang, “Analysis of the heterogeneous multiscale method for parabolic homogenization problems,” Mathematics of Computation, vol. 76, no. 257, pp. 153–177, 2007.
  • P. Ming and X. Yue, “Numerical methods for multiscale elliptic problems,” Journal of Computational Physics, vol. 214, no. 1, pp. 421–445, 2006.
  • X. Yue and W. E, “Numerical methods for multiscale transport equations and application to two-phase porous media flow,” Journal of Computational Physics, vol. 210, no. 2, pp. 656–675, 2005.
  • F. Rotersa, P. Eisenlohra, L. Hantcherlia et al., “Overview of constitutive laws, kinematics, homogenization and multiscalemethods in crystal plasticity finite-element modeling: theory, experiments, applications,” Acta Materialia, vol. 58, pp. 1152–1211, 2010.
  • J. Principe, R. Codina, and F. Henke, “The dissipative structure of variational multiscale methods for incompressible flows,” Computer Methods in Applied Mechanics and Engineering, vol. 199, no. 13–16, pp. 791–801, 2010.
  • V. John and A. Kindl, “Numerical studies of finite element variational multiscale methods for turbulent flow simulations,” Computer Methods in Applied Mechanics and Engineering, vol. 199, no. 13–16, pp. 841–852, 2010.
  • A. Abdulle and W. E, “Finite difference heterogeneous multi-scale method for homogenization problems,” Journal of Computational Physics, vol. 191, no. 1, pp. 18–39, 2003.
  • W. E, B. Engquist, and Z. Huang, “Heterogeneous multiscale method: a general methodology for multiscale modeling,” Physical Review B, vol. 67, Article ID 092101, 2003.
  • F. Chen and L. Ren, “Application of the finite difference heterogeneous multiscale method to the Richards' equation,” Water Resources Research, vol. 44, Article ID W07413, 2008.
  • X. Wen and J. J. Gomez-Hernandez, “Upscaling hydraulic conductivities in heterogeneous media: an overview,” Journal of Hydrology, vol. 183, no. 1-2.
  • P. Renard and G. de Marsily, “Calculating equivalent permeability: a review,” Advances in Water Resources, vol. 20, no. 5-6, pp. 253–278, 1997.
  • R. Du and P. Ming, “Heterogeneous multiscale finite element method with novel numerical integration schemes,” Communications in Mathematical Sciences, vol. 8, pp. 797–1091, 2010.
  • P. M. de Zeeuw, “Matrix-dependent prolongations and restrictions in a blackbox multigrid solver,” Journal of Computational and Applied Mathematics, vol. 33, no. 1, pp. 1–27, 1990.
  • L. W. Gelhar and C. L. Axness, “Three-dimensional stochastic analysis of macrodispersion in aquifers,” Water Resources Research, vol. 19, no. 1, pp. 161–180, 1983.
  • H. Cao and X. Yue, “The discrete finite volume method on quadrilateral mesh,” Journal of Suzhou University, vol. 10, pp. 6–10, 2005.
  • A. Mantoglou and J. L. Wilson, “The turning bands method for simulation of random fields using line generation by a spectral method,” Water Resources Research, vol. 18, no. 5, pp. 1379–1394, 1982.
  • H. F. Wang and M. P. Anderson, Introduction to Groundwater Modeling: Finite Difference and Finite Element Methods, W. H. Free-Man and Company, San Francisco, Calif, USA, 1982.
  • X. He and L. Ren, “A modified multiscale finite element method for well-driven flow problems in heterogeneous porous media,” Journal of Hydrology, vol. 329, no. 3-4, pp. 674–684, 2006. \endinput