Abstract and Applied Analysis

A Local Fractional Integral Inequality on Fractal Space Analogous to Anderson’s Inequality

Wei Wei, H. M. Srivastava, Yunyi Zhang, Lei Wang, Peiyi Shen, and Jing Zhang

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

Anderson's inequality (Anderson, 1958) as well as its improved version given by Fink (2003) is known to provide interesting examples of integral inequalities. In this paper, we establish local fractional integral analogue of Anderson's inequality on fractal space under some suitable conditions. Moreover, we also show that the local fractional integral inequality on fractal space, which we have proved in this paper, is a new generalization of the classical Anderson's inequality.

Article information

Source
Abstr. Appl. Anal., Volume 2014 (2014), Article ID 797561, 7 pages.

Dates
First available in Project Euclid: 2 October 2014

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1412277032

Digital Object Identifier
doi:10.1155/2014/797561

Mathematical Reviews number (MathSciNet)
MR3240563

Zentralblatt MATH identifier
07023094

Citation

Wei, Wei; Srivastava, H. M.; Zhang, Yunyi; Wang, Lei; Shen, Peiyi; Zhang, Jing. A Local Fractional Integral Inequality on Fractal Space Analogous to Anderson’s Inequality. Abstr. Appl. Anal. 2014 (2014), Article ID 797561, 7 pages. doi:10.1155/2014/797561. https://projecteuclid.org/euclid.aaa/1412277032


Export citation

References

  • B. Z. Anderson, “An inequality for convex functions,” Nordisk Matematisk Tidsskrift, vol. 6, pp. 25–26, 1958.
  • A. M. Fink, “Andersson's inequality,” Mathematical Inequalities and Applications, vol. 6, no. 2, pp. 241–245, 2003.
  • X.-J. Yang, Local Fractional Functional Analysis and Its Applications, Asian Academic, Hong Kong, 2011.
  • X.-J. Yang, “Local fractional integral transforms,” Progress in Nonlinear Science, vol. 4, pp. 1–225, 2011.
  • X.-J. Yang, Advanced Local Fractional Calculus and Its Applications, World Science, New York, NY, USA, 2012.
  • W.-H. Su, D. Baleanu, X.-J. Yang, and H. Jafari, “Damped wave equation and dissipative wave equation in fractal strings within the local fractional variational iteration method,” Fixed Point Theory and Applications, vol. 2013, no. 1, article 89, 2013.
  • M.-S. Hu, D. Baleanu, and X.-J. Yang, “One-phase problems for discontinuous heat transfer in fractal media,” Mathematical Problems in Engineering, vol. 2013, Article ID 358473, 3 pages, 2013.
  • K. M. Kolwankar and A. D. Gangal, “Hölder exponents of irregular signals and local fractional derivatives,” Pramana–-Journal of Physics, vol. 48, no. 1, pp. 49–68, 1997.
  • K. M. Kolwankar and A. D. Gangal, “Local fractional Fokker-Planck equation,” Physical Review Letters, vol. 80, no. 2, pp. 214–217, 1998.
  • G. Jumarie, “The Minkowski's space-time is consistent with differential geometry of fractional order,” Physics Letters A, vol. 363, no. 1-2, pp. 5–11, 2007.
  • G. Jumarie, “Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results,” Computers and Mathematics with Applications, vol. 51, no. 9-10, pp. 1367–1376, 2006.
  • A. Parvate and A. D. Gangal, “Calculus on fractal subsets of real line. I: formulation,” Fractals, vol. 17, no. 1, pp. 53–81, 2009.
  • A. Parvate and A. D. Gangal, “Fractal differential equations and fractal-time dynamical systems,” Pramana–-Journal of Physics, vol. 64, no. 3, pp. 389–409, 2005.
  • W. Chen, “Time-space fabric underlying anomalous diffusion,” Chaos, Solitons and Fractals, vol. 28, no. 4, pp. 923–929, 2006.
  • W. Chen, X.-D. Zhang, and D. Korošak, “Investigation on fractional and fractal derivative relaxation-oscillation models,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 11, no. 1, pp. 3–9, 2010.
  • W. Chen, H. Sun, X.-D. Zhang, and D. Korošak, “Anomalous diffusion modeling by fractal and fractional derivatives,” Computers and Mathematics with Applications, vol. 59, no. 5, pp. 1754–1758, 2010.
  • F. B. Adda and J. Cresson, “About non-differentiable functions,” Journal of Mathematical Analysis and Applications, vol. 263, no. 2, pp. 721–737, 2001.
  • J.-H. He, “A new fractal derivation,” Thermal Science, vol. 15, no. 1, pp. S145–S147, 2011.
  • J.-H. He, “Asymptotic methods for solitary solutions and compactons,” Abstract and Applied Analysis, vol. 2012, Article ID 916793, 130 pages, 2012.
  • J. Fan and J.-H. He, “Fractal derivative model for air permeability in hierarchic porous media,” Abstract and Applied Analysis, vol. 2012, Article ID 354701, 7 pages, 2012.
  • Y.-J. Yang, D. Baleanu, and X.-J. Yang, “A local fractional variational iteration method for Laplace equation within local fractional operators,” Abstract and Applied Analysis, vol. 2013, Article ID 202650, 6 pages, 2013.
  • F. Gao, X.-J. Yang, and Z. Kang, “Local fractional Newton's method derived from modified local fractional calculus,” in Proceedings of the 2nd Scientifc and Engineering Computing Symposium on Computational Sciences and Optimization (CSO '09), pp. 228–232, IEEE Computer Society, Sanya, China, April 2009.
  • X.-J. Yang and F. Gao, “The fundamentals of local fractional derivative of the one-variable nondifferentiable functions,” World Sci-Tech R and D, vol. 31, no. 5, pp. 920–921, 2009.
  • X.-J. Yang and F. Gao, “Fundamentals of local fractional iteration of the continuously nondifferentiable functions derived from local fractional calculus,” in Proceedings of the International Conference on Computer Science and Information Engineering (CSIE '11), pp. 398–404, Springer, Zhengzhou, China, May 2011.
  • X.-J. Yang, L. Li, and R. Yang, “Problems of local fractional definite integral of the one-variable nondifferentiable function,” World Sci-Tech R and D, vol. 31, pp. 722–724, 2009.
  • W.-H. Su, X.-J. Yang, H. Jafari, and D. Baleanu, “Fractional complex transform method for wave equations on Cantor sets within local fractional differential operator,” Advances in Difference Equations, vol. 2013, article 97, 2013.
  • G.-S. Chen, “The local fractional Stieltjes Transform in fractal space,” Advances in Intelligent Transportation Systems, vol. 1, no. 1, pp. 29–31, 2012.
  • G.-S. Chen, “Local fractional improper integral in fractal space,” Advances in Information Technology and Management, vol. 1, no. 1, pp. 4–8, 2012.
  • X.-J. Yang, D. Baleanu, H. M. Srivastava, and J. A. T. Machado, “On local fractional continuous wavelet transform,” Abstract and Applied Analysis, vol. 2013, Article ID 725416, 5 pages, 2013.
  • G.-S. Chen, “Mean value theorems for local fractional integrals on fractal space,” Advances in Mechanical Engineering and Its Applications, vol. 1, no. 1, pp. 5–8, 2012.
  • Y.-J. Yang, D. Baleanu, and X.-J. Yang, “Analysis of fractal wave equations by local fractional Fourier series method,” Advances in Mathematical Physics, vol. 2013, Article ID 632309, 6 pages, 2013.
  • G.-S. Chen, “The finite Yang-Laplace Transform in fractal space,” Journal of Computational Science & Engineering, vol. 6, pp. 363–365, 2013.
  • Y. Zhao, D.-F. Cheng, and X.-J. Yang, “Approximation solutions for local fractional Schrödinger equation in the one-dimensional Cantorian system,” Advances in Mathematical Physics, vol. 2013, Article ID 291386, 5 pages, 2013.
  • G.-S. Chen, “The local fractional Hilbert transform in fractal space,” Journal of Applied Sciences and Engineering Innovation, vol. 1, pp. 21–27, 2014.
  • D. Baleanu, J. A. T. Machado, C. Cattani, M. C. Baleanu, and X.-J. Yang, “Local fractional variational iteration and decomposition methods for wave equation on Cantor sets within local fractional operators,” Abstract and Applied Analysis, vol. 2014, Article ID 535048, 6 pages, 2014.
  • A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, vol. 204 of North-Holland Mathematical Studies, Elsevier Science, North-Holland, Amsterdam, The Netherlands, 2006.
  • H. M. Srivastava, “Operators of fractional calculus and associated Mittag-Leffler type functions,” in Proceedings of the 6th International Conference on Analytic Methods of Analysis and Differential Equations (AMADE '12), S. V. Rogosin, Ed., pp. 207–228, Publishing Center of the Belarusian State University, Minsk, Belarus, September 2012.
  • X.-J. Ma, H. M. Srivastava, D. Baleanu, and X.-J. Yang, “A new Neumann series method for solving a family of local fractional fredholm and volterra integral equations,” Mathematical Problems in Engineering, vol. 2013, Article ID 325121, 6 pages, 2013.
  • Y.-J. Hao, H. M. Srivastava, H. Jafari, and X.-J. Yang, “Helmholtz and diffusion equations associated with local fractional derivative operators involving the Cantorian and Cantor-type cylindrical coordinates,” Advances in Mathematical Physics, vol. 2013, Article ID 754248, 5 pages, 2013.
  • X.-J. Yang, H. M. Srivastava, J.-H. He, and D. Baleanu, “Cantor-type cylindrical-coordinate method for differential equations with local fractional derivatives,” Physics Letters A, vol. 377, no. 28–30, pp. 1696–1700, 2013.
  • A.-M. Yang, Z.-S. Chen, H. M. Srivastava, and X.-J. Yang, “Application of the local fractional series method and the variational iteration method to the Helmhotz equation involving local fractional derivative operators,” Abstract and Applied Analysis, vol. 2013, Article ID 259125, 6 pages, 2013.
  • H. Mo, X. Sui, and D. Yu, “Generalized convex functions and čommentComment on ref. [42?]: Please update the information of this reference, if possible.some inequalities on fractal sets,” submitted, http://arxiv.org/ abs/1404.3964. \endinput