Abstract and Applied Analysis

Complex Convexity of Musielak-Orlicz Function Spaces Equipped with the p -Amemiya Norm

Lili Chen, Yunan Cui, and Yanfeng Zhao

Full-text: Open access

Abstract

The complex convexity of Musielak-Orlicz function spaces equipped with the p -Amemiya norm is mainly discussed. It is obtained that, for any Musielak-Orlicz function space equipped with the p -Amemiya norm when 1 p < , complex strongly extreme points of the unit ball coincide with complex extreme points of the unit ball. Moreover, criteria for them in above spaces are given. Criteria for complex strict convexity and complex midpoint locally uniform convexity of above spaces are also deduced.

Article information

Source
Abstr. Appl. Anal., Volume 2014 (2014), Article ID 190203, 6 pages.

Dates
First available in Project Euclid: 2 October 2014

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1412276978

Digital Object Identifier
doi:10.1155/2014/190203

Mathematical Reviews number (MathSciNet)
MR3208518

Zentralblatt MATH identifier
1340.46018

Citation

Chen, Lili; Cui, Yunan; Zhao, Yanfeng. Complex Convexity of Musielak-Orlicz Function Spaces Equipped with the $p$ -Amemiya Norm. Abstr. Appl. Anal. 2014 (2014), Article ID 190203, 6 pages. doi:10.1155/2014/190203. https://projecteuclid.org/euclid.aaa/1412276978


Export citation

References

  • O. Blasco and M. Pavlović, “Complex convexity and vector-valued Littlewood-Paley inequalities,” Bulletin of the London Mathematical Society, vol. 35, no. 6, pp. 749–758, 2003.
  • C. Choi, A. Kamińska, and H. J. Lee, “Complex convexity of Orlicz-Lorentz spaces and its applications,” Bulletin of the Polish Academy of Sciences: Mathematics, vol. 52, no. 1, pp. 19–38, 2004.
  • H. Hudzik and A. Narloch, “Relationships between monotonicity and complex rotundity properties with some consequences,” Mathematica Scandinavica, vol. 96, no. 2, pp. 289–306, 2005.
  • H. J. Lee, “Monotonicity and complex convexity in Banach lattices,” Journal of Mathematical Analysis and Applications, vol. 307, no. 1, pp. 86–101, 2005.
  • H. J. Lee, “Complex convexity and monotonicity in Quasi-Banach lattices,” Israel Journal of Mathematics, vol. 159, no. 1, pp. 57–91, 2007.
  • M. M. Czerwińska and A. Kamińska, “Complex rotundities and midpoint local uniform rotundity in symmetric spaces of measurable operators,” Studia Mathematica, vol. 201, no. 3, pp. 253–285, 2010.
  • E. Thorp and R. Whitley, “The strong maximum modulus theorem for analytic functions into a Banach space,” Proceedings of the American Mathematical Society, vol. 18, pp. 640–646, 1967.
  • L. Chen, Y. Cui, and H. Hudzik, “Criteria for complex strongly extreme points of Musielak-Orlicz function spaces,” Nonlinear Analysis: Theory, Methods & Applications, vol. 70, no. 6, pp. 2270–2276, 2009.
  • S. Chen, Geometry of Orlicz Spaces, Dissertationes Mathematicae, 1996.
  • Y. Cui, L. Duan, H. Hudzik, and M. Wisła, “Basic theory of p-Amemiya norm in Orlicz spaces $\left(1\leq p\leq \infty \right)$: extreme points and rotundity in Orlicz spaces endowed with these norms,” Nonlinear Analysis: Theory, Methods & Applications, vol. 69, no. 5-6, pp. 1796–1816, 2008. \endinput