Abstract and Applied Analysis

Nontrivial Solutions for Asymmetric Kirchhoff Type Problems

Ruichang Pei and Jihui Zhang

Full-text: Open access

Abstract

We consider a class of particular Kirchhoff type problems with a right-hand side nonlinearity which exhibits an asymmetric growth at + and in N ( N = 2 , 3 ) . Namely, it is 4-linear at and 4-superlinear at + . However, it need not satisfy the Ambrosetti-Rabinowitz condition on the positive semiaxis. Some existence results for nontrivial solution are established by combining Mountain Pass Theorem and a variant version of Mountain Pass Theorem with Moser-Trudinger inequality.

Article information

Source
Abstr. Appl. Anal., Volume 2014 (2014), Article ID 163645, 8 pages.

Dates
First available in Project Euclid: 2 October 2014

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1412276918

Digital Object Identifier
doi:10.1155/2014/163645

Mathematical Reviews number (MathSciNet)
MR3198153

Zentralblatt MATH identifier
07021842

Citation

Pei, Ruichang; Zhang, Jihui. Nontrivial Solutions for Asymmetric Kirchhoff Type Problems. Abstr. Appl. Anal. 2014 (2014), Article ID 163645, 8 pages. doi:10.1155/2014/163645. https://projecteuclid.org/euclid.aaa/1412276918


Export citation

References

  • C. O. Alves, F. J. S. A. Corrêa, and T. F. Ma, “Positive solutions for a quasilinear elliptic equation of Kirchhoff type,” Computers & Mathematics with Applications, vol. 49, no. 1, pp. 85–93, 2005.
  • G. Kirchhoff, Vorlesungen Über Mechanik, Teubner, Leipzig, Germany, 1883.
  • A. Arosio and S. Panizzi, “On the well-posedness of the Kirchhoff string,” Transactions of the American Mathematical Society, vol. 348, no. 1, pp. 305–330, 1996.
  • M. Chipot and B. Lovat, “Some remarks on nonlocal elliptic and parabolic problems,” Nonlinear Analysis: Theory, Methods & Applications, vol. 30, no. 7, pp. 4619–4627, 1997.
  • P. D'Ancona and S. Spagnolo, “Global solvability for the degenerate Kirchhoff equation with real analytic data,” Inventiones Mathematicae, vol. 108, no. 2, pp. 247–262, 1992.
  • T. F. Ma and J. E. M. Rivera, “Positive solutions for a nonlinear nonlocal elliptic transmission problem,” Applied Mathematics Letters, vol. 16, no. 2, pp. 243–248, 2003.
  • X. He and W. Zou, “Infinitely many positive solutions for Kirchhoff-type problems,” Nonlinear Analysis: Theory, Methods & Applications, vol. 70, no. 3, pp. 1407–1414, 2009.
  • K. Perera and Z. Zhang, “Nontrivial solutions of Kirchhoff-type problems via the Yang index,” Journal of Differential Equations, vol. 221, no. 1, pp. 246–255, 2006.
  • Z. Zhang and K. Perera, “Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow,” Journal of Mathematical Analysis and Applications, vol. 317, no. 2, pp. 456–463, 2006.
  • A. Mao and Z. Zhang, “Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition,” Nonlinear Analysis: Theory, Methods & Applications, vol. 70, no. 3, pp. 1275–1287, 2009.
  • D. Arcoya and S. Villegas, “Nontrivial solutions for a Neumann problem with a nonlinear term asymptotically linear at $-\infty $ and superlinear at $+\infty $,” Mathematische Zeitschrift, vol. 219, no. 4, pp. 499–513, 1995.
  • D. G. de Figueiredo and B. Ruf, “On a superlinear Sturm-Liouville equation and a related bouncing problem,” Journal für die Reine und Angewandte Mathematik, vol. 421, pp. 1–22, 1991.
  • K. Perera, “Existence and multiplicity results for a Sturm-Liouville equation asymptotically linear at $-\infty $ and superlinear at $+\infty $,” Nonlinear Analysis: Theory, Methods & Applications, vol. 39, no. 6, pp. 669–684, 2000.
  • D. Motreanu, V. V. Motreanu, and N. S. Papageorgiou, “Multiple solutions for Dirichlet problems which are superlinear at $+\infty $ and (sub-)linear at $-\infty $,” Communications in Applied Analysis, vol. 13, no. 3, pp. 341–357, 2009.
  • B. Cheng and X. Wu, “Existence results of positive solutions of Kirchhoff type problems,” Nonlinear Analysis: Theory, Methods & Applications, vol. 71, no. 10, pp. 4883–4892, 2009.
  • Z. Liu and Z.-Q. Wang, “On the Ambrosetti-Rabinowitz superlinear condition,” Advanced Nonlinear Studies, vol. 4, no. 4, pp. 563–574, 2004.
  • A. Ambrosetti and P. H. Rabinowitz, “Dual variational methods in critical point theory and applications,” vol. 14, pp. 349–381, 1973.
  • D. G. Costa and O. H. Miyagaki, “Nontrivial solutions for perturbations of the $p$-Laplacian on unbounded domains,” Journal of Mathematical Analysis and Applications, vol. 193, no. 3, pp. 737–755, 1995.
  • N. S. Trudinger, “On imbeddings into Orlicz spaces and some applications,” Journal of Mathematics and Mechanics, vol. 17, pp. 473–483, 1967.
  • J. Moser, “A sharp form of an inequality by N. Trudinger,” Indiana University Mathematics Journal, vol. 20, pp. 1077–1092, 1971. \endinput