Abstract and Applied Analysis

Robust Tube-Based MPC with Piecewise Affine Control Laws

Meng Zhao and Xiaoming Tang

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

This paper presents a tube-based model predictive control (MPC) algorithm with piecewise affine control laws for discrete-time linear systems in the presence of bounded disturbances. By solving the standard multiparametric quadratic programming (mp-QP), the explicit piecewise affine control laws for tube-based MPC are obtained. Each control law is piecewise affine with respect to the corresponding region (one of the partitions of the feasible set). Due to the fact that the above-mentioned procedures are totally offline, the online computation time is short enough for stabilizing those systems with fast dynamics. In this paper, all the involved constraint sets are assumed to be polytopes. An illustrative example is utilized to verify the feasibility and efficiency of the proposed algorithm.

Article information

Source
Abstr. Appl. Anal., Volume 2014 (2014), Article ID 358148, 14 pages.

Dates
First available in Project Euclid: 2 October 2014

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1412273234

Digital Object Identifier
doi:10.1155/2014/358148

Mathematical Reviews number (MathSciNet)
MR3182276

Zentralblatt MATH identifier
07022219

Citation

Zhao, Meng; Tang, Xiaoming. Robust Tube-Based MPC with Piecewise Affine Control Laws. Abstr. Appl. Anal. 2014 (2014), Article ID 358148, 14 pages. doi:10.1155/2014/358148. https://projecteuclid.org/euclid.aaa/1412273234


Export citation

References

  • D. Q. Mayne and W. Langson, “Robustifying model predictive control of constrained linear systems,” Electronics Letters, vol. 37, no. 23, pp. 1422–1423, 2001.
  • D. Q. Mayne, M. M. Seron, and S. V. Raković, “Robust model predictive control of constrained linear systems with bounded disturbances,” Automatica, vol. 41, no. 2, pp. 219–224, 2005.
  • M. Farina and R. Scattolini, “Tube-based robust sampled-data MPC for linear continuous-time systems,” Automatica, vol. 48, no. 7, pp. 1473–1476, 2012.
  • D. Limon, I. Alvarado, T. Alamo, and E. F. Camacho, “Robust tube-based MPC for tracking of constrained linear systems with additive disturbances,” Journal of Process Control, vol. 20, no. 3, pp. 248–260, 2010.
  • H. Kong, G. Goodwin, and M. M. Seron, “Predictive metamorphic control,” Automatica, vol. 49, no. 12, pp. 3670–3676, 2013.
  • M. Cannon, B. Kouvaritakis, S. V. Raković, and Q. Cheng, “Stochastic tubes in model predictive control with probabilistic constraints,” IEEE Transactions on Automatic Control, vol. 56, no. 1, pp. 194–200, 2011.
  • S. V. Raković, B. Kouvaritakis, R. Findeisen, and M. Cannon, “Homothetic tube model predictive control,” Automatica, vol. 48, no. 8, pp. 1631–1638, 2012.
  • D. Q. Mayne, E. C. Kerrigan, E. J. van Wyk, and P. Falugi, “Tube-based robust nonlinear model predictive control,” International Journal of Robust and Nonlinear Control, vol. 21, no. 11, pp. 1341–1353, 2011.
  • M. Cannon, J. Buerger, B. Kouvaritakis, and S. Raković, “Robust tubes in nonlinear model predictive control,” IEEE Transactions on Automatic Control, vol. 56, no. 8, pp. 1942–1947, 2011.
  • S. Yu, C. Maier, H. Chen, and F. Allgöwer, “Tube MPC scheme based on robust control invariant set with application to Lipschitz nonlinear systems,” Systems & Control Letters, vol. 62, no. 2, pp. 194–200, 2013.
  • F. Borrelli, A. Bemporad, and M. Morari, “Geometric algorithm for multiparametric linear programming,” Journal of Optimization Theory and Applications, vol. 118, no. 3, pp. 515–540, 2003.
  • C. N. Jones, M. Barić, and M. Morari, “Multiparametric linear programming with applications to control,” European Journal of Control, vol. 13, no. 2-3, pp. 152–170, 2007.
  • M. Morari, C. N. Jones, M. N. Zeilinger, and M. Barić, “Multiparametric linear programming for control,” in Proceedings of the 27th Chinese Control Conference (CCC '08), pp. 2–4, July 2008.
  • M. Hladík, “Multiparametric linear programming: support set and optimal partition invariancy,” European Journal of Operational Research, vol. 202, no. 1, pp. 25–31, 2010.
  • A. Bemporad and C. Filippi, “Suboptimal explicit receding horizon control via approximate multiparametric quadratic programming,” Journal of Optimization Theory and Applications, vol. 117, no. 1, pp. 9–38, 2003.
  • A. Gupta, S. Bhartiya, and P. S. V. Nataraj, “A novel approach to multiparametric quadratic programming,” Automatica, vol. 47, no. 9, pp. 2112–2117, 2011.
  • M. Baotić, “An efficient algorithm for multi-parametric quadratic programming,” Tech. Rep. AUT02-05, Institut für Automatik, ETH Zürich, 2002.
  • P. Tøndel, T. A. Johansen, and A. Bemporad, “An algorithm for multi-parametric quadratic programming and explicit MPC solutions,” Automatica, vol. 39, no. 3, pp. 489–497, 2003.
  • J. Spjøtvold, E. C. Kerrigan, C. N. Jones, P. Tøndel, and T. A. Johansen, “On the facet-to-facet property of solutions to convex parametric quadratic programs,” Automatica, vol. 42, no. 12, pp. 2209–2214, 2006.
  • E. N. Pistikopoulos, “Perspectives in multiparametric programming and explicit model predictive control,” AIChE Journal, vol. 55, no. 8, pp. 1918–1925, 2009.
  • A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos, “The explicit linear quadratic regulator for constrained systems,” Automatica, vol. 38, no. 1, pp. 3–20, 2002.
  • C. N. Jones and M. Morari, “Polytopic approximation of explicit model predictive controllers,” IEEE Transactions on Automatic Control, vol. 55, no. 11, pp. 2542–2553, 2010.
  • C. Wen, X. Ma, and B. E. Ydstie, “Analytical expression of explicit MPC solution via lattice piecewise-affine function,” Automatica, vol. 45, no. 4, pp. 910–917, 2009.
  • P. T. Tøndel and T. A. Johansen, “Complexity reduction in explicit linear model predictive control,” in Proceedings of the 15th IFAC World Congress, 2002.
  • F. Borrelli, M. Baotić, J. Pekar, and G. Stewart, “On the complexity of explicit MPC laws,” in Proceedings of the European Control Conference, 2009.
  • M. Kvasnica and M. Fikar, “Clipping-based complexity reduction in explicit MPC,” IEEE Transactions on Automatic Control, vol. 57, no. 7, pp. 1878–1883, 2012.
  • P. Tøndel, T. A. Johansen, and A. Bemporad, “Evaluation of piecewise affine control via binary search tree,” Automatica, vol. 39, no. 5, pp. 945–950, 2003.
  • Y. Wang, C. Jones, and J. Maciejowski, “Efficient point location via subdivision walking with application to explicit MPC,” in Proceedings of the European Control Conference, 2007.
  • F. Bayat, T. A. Johansen, and A. A. Jalali, “Using hash tables to manage the time-storage complexity in a point location problem: application to explicit model predictive control,” Automatica, vol. 47, no. 3, pp. 571–577, 2011.
  • G. M. Ziegler, Lectures on Polytopes, vol. 152 of Graduate Texts in Mathematics, Springer, New York, NY, USA, 1995.
  • M. Kvasnica, P. Grieder, and M. Baotić, “Multi-parametric toolbox (MPT),” 2004, http://control.ee.ethz.ch/$\sim\,\!$mpt/3/.
  • E. C. Kerrigan, Robust Constraint Satisfaction: Invariant Sets and Predictive Control, University of Cambridge, Cambridge, UK, 2000.
  • S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, Cambridge, Mass, USA, 2004.
  • F. Blanchini, “Set invariance in control,” Automatica, vol. 35, no. 11, pp. 1747–1767, 1999.
  • S. V. Raković, E. C. Kerrigan, K. I. Kouramas, and D. Q. Mayne, “Invariant approximation of the minimal robust positively invariant set,” IEEE Transactions on Automatic Control, vol. 50, no. 3, pp. 406–410, 2005.
  • D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. M. Scokaert, “Constrained model predictive control: stability and optimality,” Automatica, vol. 36, no. 6, pp. 789–814, 2000.
  • E. G. Gilbert and K. T. Tan, “Linear systems with state and control constraints: the theory and application of maximal output admissible sets,” IEEE Transactions on Automatic Control, vol. 36, no. 9, pp. 1008–1020, 1991.
  • W. H. Kwon and S. Han, Receding Horizon Control: Model Predictive Control for State Models, Springer, London, UK, 2005.
  • M. Johansson and A. Rantzer, “Computation of piecewise quadratic Lyapunov functions for hybrid systems,” IEEE Transactions on Automatic Control, vol. 43, no. 4, pp. 555–559, 1998.
  • G. Ferrari-Trecate, F. A. Cuzzola, D. Mignone, and M. Morari, “Analysis of discrete-time piecewise affine and hybrid systems,” Automatica, vol. 38, no. 12, pp. 2139–2146, 2002. \endinput