Abstract and Applied Analysis

Exploring the Best Classification from Average Feature Combination

Jian Hou, Wei-Xue Liu, and Hamid Reza Karimi

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

Feature combination is a powerful approach to improve object classification performance. While various combination algorithms have been proposed, average combination is almost always selected as the baseline algorithm to be compared with. In previous work we have found that it is better to use only a sample of the most powerful features in average combination than using all. In this paper, we continue this work and further show that the behaviors of features in average combination can be integrated into the k-Nearest-Neighbor (kNN) framework. Based on the kNN framework, we then propose to use a selection based average combination algorithm to obtain the best classification performance from average combination. Our experiments on four diverse datasets indicate that this selection based average combination performs evidently better than the ordinary average combination, and thus serves as a better baseline. Comparing with this new and better baseline makes the claimed superiority of newly proposed combination algorithms more convincing. Furthermore, the kNN framework is helpful in understanding the underlying mechanism of feature combination and motivating novel feature combination algorithms.

Article information

Source
Abstr. Appl. Anal., Volume 2014 (2014), Article ID 602763, 7 pages.

Dates
First available in Project Euclid: 2 October 2014

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1412273172

Digital Object Identifier
doi:10.1155/2014/602763

Zentralblatt MATH identifier
07022703

Citation

Hou, Jian; Liu, Wei-Xue; Karimi, Hamid Reza. Exploring the Best Classification from Average Feature Combination. Abstr. Appl. Anal. 2014 (2014), Article ID 602763, 7 pages. doi:10.1155/2014/602763. https://projecteuclid.org/euclid.aaa/1412273172


Export citation

References

  • D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” International Journal of Computer Vision, vol. 60, no. 2, pp. 91–110, 2004.
  • H. Bay, A. Ess, T. Tuytelaars, and L. van Gool, “Surf: speeded up robust features,” Computer Vision and Image Understanding, vol. 110, no. 3, pp. 346–359, 2008.
  • N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR '05), pp. 886–893, June 2005.
  • L. Sun, C.-Z. Han, J.-J. Shen, and N. Dai, “Generalized rough set method for ensemble feature selection and multiple classifier fusion,” Acta Automatica Sinica, vol. 34, no. 3, pp. 298–304, 2008.
  • J. Hou and M. Pelillo, “A simple feature combination method based on dominant sets,” Pattern Recognition, vol. 46, pp. 3129–3139, 2013.
  • G. R. G. Lanckriet, N. Cristianini, P. Bartlett, L. El Ghaoui, and M. I. Jordan, “Learning the kernel matrix with semidefinite programming,” Journal of Machine Learning Research, vol. 5, pp. 27–72, 2004.
  • A. Kumar and C. Sminchisescu, “Support Kernel machines for object recognition,” in Proceedings of the IEEE 11th International Conference on Computer Vision (ICCV '07), October 2007.
  • Y. Y. Lin, T. L. Liu, and C. S. Fuh, “Local ensemble kernel learning for object category recognition,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR '07), pp. 1–8, June 2007.
  • M. Varma and D. Ray, “Learning the discriminative power-invariance trade-off,” in Proceedings of the IEEE 11th International Conference on Computer Vision (ICCV '07), pp. 1–8, October 2007.
  • J. Yang, Y. Li, Y. Tian, L. Duan, and W. Gao, “Group-sensitive multiple kernel learning for object categorization,” in Proceedings of the 12th International Conference on Computer Vision (ICCV '09), pp. 436–443, October 2009.
  • M. Gönen and E. Alpaydin, “Localized multiple kernel learning,” in Proceedings of the 25th International Conference on Machine Learning, pp. 642–651, July 2008.
  • P. Gehler and S. Nowozin, “On feature combination for multiclass object classification,” in Proceedings of the IEEE International Conference on Computer Vision, pp. 221–228, 2009.
  • L. I. Kuncheva, “A theoretical study on six classifier fusion strategies,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 2, pp. 281–286, 2002.
  • S. Tulyakov, S. Jaeger, V. Govindaraju, and D. Doermann, Review of Classifier Combination Methods, Springer, New York, NY, USA, 2008.
  • J. Hou, B. P. Zhang, N. M. Qi, and Y. Yang, “Evaluating feature combination in object classification,” in Proceedings of the International Symposium on Visual Computing, pp. 597–606, 2011.
  • S. Yin, S. Ding, A. Haghani, H. Hao, and P. Zhang, “A comparison study of basic datadriven fault diagnosis and process monitoring methods on the benchmark tennessee eastman process,” Journal of Process Control, vol. 22, pp. 1567–1581, 2012.
  • S. Yin, X. Yang, and H. R. Karimi, “Data-driven adaptive observer for fault diagnosis,” Mathematical Problems in Engineering, vol. 2012, Article ID 832836, 21 pages, 2012.
  • S. Yin, G. Wang, and H. Karimi, “Data-driven design of robust fault detection system for wind turbines,” Mechatronics, 2013.
  • L. L. Jia and L. Fei-Fei, “What, where and who? classifying event by scene and object recognition,” in Proceedings of the IEEE International Conference on Computer Vision, pp. 1–8, 2007.
  • S. Lazebnik, C. Schmid, and J. Ponce, “Beyond bags of features: spatial pyramid matching for recognizing natural scene categories,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR '06), vol. 2, pp. 2169–2178, June 2006.
  • M. E. Nilsback and A. Zisserman, “A visual vocabulary for flower classification,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR '06), pp. 1447–1454, June 2006.
  • L. Fei-Fei, R. Fergus, and P. Perona, “Learning generative visual models from few training examples: an incremental bayesian approach tested on 101 object categories,” in Proceedings of the Computer Vision and Pattern Recognition Workshop (CVPRW '04), p. 178, 2004.
  • A. Bosch, A. Zisserman, and X. Munoz, “Representing shape with a spatial pyramid kernel,” in Proceedings of the 6th ACM International Conference on Image and Video Retrieval (CIVR '07), pp. 401–408, July 2007.
  • J. Hou, W. X. Liu, E. Xu, Q. Xia, and N. M. Qi, “An experimental study on the universality of visual vocabularies,” Journal of Visual Communication and Image Representation, vol. 24, pp. 1204–1211, 2013.
  • S. Yin, H. Luo, and S. Ding, “Real-time implementation of fault-tolerant control systems with performance optimization,” IEEE Transactions on Industrial Electronics, vol. 61, pp. 2402–2411, 2014.
  • A. Baak, M. Muller, G. Bharaj, H.-P. Seidel, and C. Theobalt, “A data-driven approach for real-time full body pose reconstruction from a depth camera,” in Proceedings of the IEEE International Conference on Computer Vision (ICCV '11), pp. 1092–1099, November 2011.
  • S. Yin, S. Ding, A. Haghani, and H. Hao, “Data-driven monitoring for stochastic systems and its application on batch process,” International Journal of Systems Science, vol. 44, pp. 1366–1376, 2013. \endinput