Abstract and Applied Analysis

Existence of Solutions for Nonlinear Mixed Type Integrodifferential Functional Evolution Equations with Nonlocal Conditions

Shengli Xie

Full-text: Open access

Abstract

Using Mönch fixed point theorem, this paper proves the existence and controllability of mild solutions for nonlinear mixed type integrodifferential functional evolution equations with nonlocal conditions in Banach spaces, some restricted conditions on a priori estimation and measure of noncompactness estimation have been deleted, our results extend and improve many known results. As an application, we have given a controllability result of the system.

Article information

Source
Abstr. Appl. Anal., Volume 2012, Special Issue (2012), Article ID 913809, 11 pages.

Dates
First available in Project Euclid: 7 May 2014

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1399486661

Digital Object Identifier
doi:10.1155/2012/913809

Mathematical Reviews number (MathSciNet)
MR2975359

Zentralblatt MATH identifier
1253.45009

Citation

Xie, Shengli. Existence of Solutions for Nonlinear Mixed Type Integrodifferential Functional Evolution Equations with Nonlocal Conditions. Abstr. Appl. Anal. 2012, Special Issue (2012), Article ID 913809, 11 pages. doi:10.1155/2012/913809. https://projecteuclid.org/euclid.aaa/1399486661


Export citation

References

  • R. Ravi Kumar, “Nonlocal Cauchy problem for analytic resolvent integrodifferential equations in Banach spaces,” Applied Mathematics and Computation, vol. 204, no. 1, pp. 352–362, 2008.
  • B. Radhakrishnan and K. Balachandran, “Controllability results for semilinear impulsive integrodifferential evolution systems with nonlocal conditions,” Journal of Control Theory and Applications, vol. 10, no. 1, pp. 28–34, 2012.
  • J. Wang and W. Wei, “A class of nonlocal impulsive problems for integrodifferential equations in Banach spaces,” Results in Mathematics, vol. 58, no. 3-4, pp. 379–397, 2010.
  • M. B. Dhakne and K. D. Kucche, “Existence of a mild solution of mixed Volterra-Fredholm functional integrodifferential equation with nonlocal condition,” Applied Mathematical Sciences, vol. 5, no. 5–8, pp. 359–366, 2011.
  • N. Abada, M. Benchohra, and H. Hammouche, “Existence results for semilinear differential evolution equations with impulses and delay,” CUBO. A Mathematical Journal, vol. 12, no. 2, pp. 1–17, 2010.
  • X. Xu, “Existence for delay integrodifferential equations of Sobolev type with nonlocal conditions,” International Journal of Nonlinear Science, vol. 12, no. 3, pp. 263–269, 2011.
  • Y. Yang and J. Wang, “On some existence results of mild solutions for nonlocal integrodifferential Cauchy problems in Banach spaces,” Opuscula Mathematica, vol. 31, no. 3, pp. 443–455, 2011.
  • Q. Liu and R. Yuan, “Existence of mild solutions for semilinear evolution equations with non-local initial conditions,” Nonlinear Analysis, vol. 71, no. 9, pp. 4177–4184, 2009.
  • A. Boucherif and R. Precup, “Semilinear evolution equations with nonlocal initial conditions,” Dynamic Systems and Applications, vol. 16, no. 3, pp. 507–516, 2007.
  • D. N. Chalishajar, “Controllability of mixed Volterra-Fredholm-type integro-differential systems in Banach space,” Journal of the Franklin Institute, vol. 344, no. 1, pp. 12–21, 2007.
  • J. H. Liu and K. Ezzinbi, “Non-autonomous integrodifferential equations with non-local conditions,” Journal of Integral Equations and Applications, vol. 15, no. 1, pp. 79–93, 2003.
  • K. Balachandran and R. Sakthivel, “Controllability of semilinear functional integrodifferential sys-tems in Banach spaces,” Kybernetika, vol. 36, no. 4, pp. 465–476, 2000.
  • Y. P. Lin and J. H. Liu, “Semilinear integrodifferential equations with nonlocal Cauchy problem,” Non-linear Analysis, vol. 26, no. 5, pp. 1023–1033, 1996.
  • K. Malar, “Existence of mild solutions for nonlocal integro-di erential equations with measure of non-compactness,” Internationnal Journal of Mathematics and Scientic Computing, vol. 1, pp. 86–91, 2011.
  • H.-B. Shi, W.-T. Li, and H.-R. Sun, “Existence of mild solutions for abstract mixed type semilinear evolution equations,” Turkish Journal of Mathematics, vol. 35, no. 3, pp. 457–472, 2011.
  • T. Zhu, C. Song, and G. Li, “Existence of mild solutions for abstract semilinear evolution equations in Banach spaces,” Nonlinear Analysis, vol. 75, no. 1, pp. 177–181, 2012.
  • Z. Fan, Q. Dong, and G. Li, “Semilinear differential equations with nonlocal conditions in Banach spaces,” International Journal of Nonlinear Science, vol. 2, no. 3, pp. 131–139, 2006.
  • X. Xue, “Existence of solutions for semilinear nonlocal Cauchy problems in Banach spaces,” Electronic Journal of Differential Equations, vol. 64, pp. 1–7, 2005.
  • S. K. Ntouyas and P. Ch. Tsamatos, “Global existence for semilinear evolution equations with nonlocal conditions,” Journal of Mathematical Analysis and Applications, vol. 210, no. 2, pp. 679–687, 1997.
  • L. Byszewski and H. Akca, “Existence of solutions of a semilinear functional-differential evolution nonlocal problem,” Nonlinear Analysis, vol. 34, no. 1, pp. 65–72, 1998.
  • H.-P. Heinz, “On the behaviour of measures of noncompactness with respect to differentiation and integration of vector-valued functions,” Nonlinear Analysis, vol. 7, no. 12, pp. 1351–1371, 1983.
  • D. Guo, V. Lakshmikantham, and X. Liu, Nonlinear Integral Equations in Abstract Spaces, vol. 373 of Mathematics and Its Applications, Kluwer Academic, Dordrecht, The Netherlands, 1996.
  • H. Mönch, “Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces,” Nonlinear Analysis, vol. 4, no. 5, pp. 985–999, 1980.
  • R. Ye, Q. Dong, and G. Li, “Existence of solutions for double perturbed neutral functional evolution equation,” International Journal of Nonlinear Science, vol. 8, no. 3, pp. 360–367, 2009.
  • A. Friedman, Partial Differential Equations, Holt, Rinehart and Winston, New York, NY, USA, 1969.