Abstract and Applied Analysis

Robust Adaptive Dynamic Surface Control for a Class of Nonlinear Dynamical Systems with Unknown Hysteresis

Yong-Hua Liu, Ying Feng, and Xinkai Chen

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

The output tracking problem for a class of uncertain strict-feedback nonlinear systems with unknown Duhem hysteresis input is investigated. In order to handle the undesirable effects caused by unknown hysteresis, the properties in respect to Duhem model are used to decompose it as a nonlinear smooth term and a nonlinear bounded “disturbance-like” term, which makes it possible to deal with the unknown hysteresis without constructing inverse in the controller design. By combining robust control and dynamic surface control technique, an adaptive controller is proposed in this paper to avoid “the explosion complexity” in the standard backstepping design procedure. The negative effects caused by the unknown hysteresis can be mitigated effectively, and the semiglobal uniform ultimate boundedness of all the signals in the closed-loop system is obtained. The effectiveness of the proposed scheme is validated through a simulation example.

Article information

Source
Abstr. Appl. Anal., Volume 2014 (2014), Article ID 640249, 10 pages.

Dates
First available in Project Euclid: 26 March 2014

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1395858506

Digital Object Identifier
doi:10.1155/2014/640249

Mathematical Reviews number (MathSciNet)
MR3166638

Zentralblatt MATH identifier
07022802

Citation

Liu, Yong-Hua; Feng, Ying; Chen, Xinkai. Robust Adaptive Dynamic Surface Control for a Class of Nonlinear Dynamical Systems with Unknown Hysteresis. Abstr. Appl. Anal. 2014 (2014), Article ID 640249, 10 pages. doi:10.1155/2014/640249. https://projecteuclid.org/euclid.aaa/1395858506


Export citation

References

  • Y. Cao, L. Cheng, X. B. Chen, and J. Y. Peng, “An Inversion-based model predictive control with an integral-of-error state variable for Piezoelectric actuators,” IEEE/ASME Transactions on Mechatronics, vol. 18, no. 3, pp. 895–904, 2013.
  • Z. Li and C.-Y. Su, “Neural-adaptive control of single-master multiple slaves teleoperation for coordinated multiple mobile manipulators with time-varying communication delays and input uncertainty,” IEEE Transactions on Neural Networks and Learning Systems, vol. 24, no. 9, pp. 1400–1413, 2013.
  • Z. Li, X. Cao, Y. Yang, R. Li, and W. Ye, “Bilateral teleoperation of holonomic constrained robotic system with time-varying delays,” IEEE Transactions on Instrumentation and Measurement, vol. 62, no. 4, pp. 752–765, 2013.
  • Z. Li, C. Yang, N. Ding, S. Bogdan, and T. Ge, “Robust adaptive motion control for remotely operated vehicles with velocity constraints,” International Journal of Control, Automation, and System, vol. 10, no. 2, pp. 421–429, 2012.
  • Z. Li, B. Wang, C. Yang, Q. Xie, and C. Y. Su, “Boosting-based EMG patterns classification scheme for robustness enhancement,” IEEE Journal of Biomedical and Health Informatics, vol. 17, no. 3, pp. 545–552, 2013.
  • I. Mayergoyz, Mathematical Models of Hysteresis and Their Applications, Elsevier, New York, NY, USA, 2003.
  • M. Nordin and P. Gutman, “Controlling mechanical systems with backlash–-a survey,” Automatica, vol. 38, no. 10, pp. 1633–1649, 2002.
  • G. V. Webb, D. C. Lagoudas, and A. J. Kurdila, “Hysteresis modeling of SMA actuators for control applications,” Journal of Intelligent Material Systems and Structures, vol. 9, no. 6, pp. 432–448, 1998.
  • C.-Y. Su, Y. Stepanenko, J. Svoboda, and T. P. Leung, “Robust adaptive control of a class of nonlinear systems with unknown backlash-like hysteresis,” IEEE Transactions on Automatic Control, vol. 45, no. 12, pp. 2427–2432, 2000.
  • B. D. Coleman and M. L. Hodgdon, “A constitutive relation for rate-independent hysteresis in ferromagnetically soft materials,” International Journal of Engineering Science, vol. 24, no. 6, pp. 897–919, 1986.
  • Y. K. Wen, “Method for random vibration of hysteretic systems,” Journal of Engineering Mechanics, vol. 102, no. 2, pp. 249–263, 1976.
  • P. Duhem, “Die dauernden Aenderungen und die Thermodynamik,” Zeitschrift für Physikalische Chemie, vol. 22, pp. 543–589, 1897.
  • M. A. Krasnoskl'skii and A. V. Pokrovskii, Systems with Hysteresis, Springer, New York, 1989.
  • J. W. Macki, P. Nistri, and P. Zecca, “Mathematical models for hysteresis,” SIAM Review, vol. 35, no. 1, pp. 94–123, 1993.
  • F. Preisach, “Über die magnetische Nachwirkung,” Zeitschrift für Physik, vol. 94, no. 5-6, pp. 277–302, 1935.
  • S. A. Belbas and I. D. Mayergoyz, “Optimal control of dynamical systems with Preisach hysteresis,” International Journal of Non-Linear Mechanics, vol. 37, no. 8, pp. 1351–1361, 2002.
  • Y. Feng, Y. Hu, C. A. Rabbath, and C. Su, “Robust adaptive control for a class of perturbed strict-feedback non-linear systems with unknown Prandtl-Ishlinskii hysteresis,” International Journal of Control, vol. 81, no. 11, pp. 1699–1708, 2008.
  • A. Gudovich and M. Quincampoix, “Optimal control with hysteresis nonlinearity and multidimensional play operator,” SIAM Journal on Control and Optimization, vol. 49, no. 2, pp. 788–807, 2011.
  • C.-Y. Su, Y. Feng, H. Hong, and X. Chen, “Adaptive control of system involving complex hysteretic nonlinearities: a generalised Prandtl-Ishlinskii modelling approach,” International Journal of Control, vol. 82, no. 10, pp. 1786–1793, 2009.
  • P. Krejci and K. Kuhnen, “Inverse control of systems with hysteresis and creep,” IEE Proceedings, vol. 148, no. 3, pp. 185–192, 2001.
  • G. Tao and P. V. Kokotovic, “Adaptive control of plants with unknown hystereses,” IEEE Transactions on Automatic Control, vol. 40, no. 2, pp. 200–212, 1995.
  • F. Ikhouane, V. Mañosa, and J. Rodellar, “Adaptive control of a hysteretic structural system,” Automatica, vol. 41, no. 2, pp. 225–231, 2005.
  • C.-Y. Su, Q. Wang, X. Chen, and S. Rakheja, “Adaptive variable structure control of a class of nonlinear systems with unknown Prandtl-Ishlinskii hysteresis,” IEEE Transactions on Automatic Control, vol. 50, no. 12, pp. 2069–2074, 2005.
  • J. Zhou, C.-Y. Wen, and Y. Zhang, “Adaptive backstepping control of a class of uncertain nonlinear systems with unknown backlash-like hysteresis,” IEEE Transactions on Automatic Control, vol. 49, no. 10, pp. 1751–1757, 2004.
  • Y. Feng, C. A. Rabbath, T. Chai, and C.-Y. Su, “Robust adaptive control of systems with hysteretic nonlinearities: a Duhem hysteresis modelling approach,” in Proceedings of the IEEE Africon 2009, pp. 1–6, New York, NY, USA, September 2009.
  • D. Swaroop, J. K. Hedrick, P. P. Yip, and J. C. Gerdes, “Dynamic surface control for a class of nonlinear systems,” IEEE Transactions on Automatic Control, vol. 45, no. 10, pp. 1893–1899, 2000.
  • M. L. Hodgdon, “Applications of a theory of ferromagnetic hysteresis,” IEEE Transactions on Magnetics, vol. 24, no. 1, pp. 218–221, 1987.
  • M. L. Hodgdon, “Mathematical theory and calculations of magnetic hysteresis curves,” IEEE Transactions on Magnetics, vol. 24, no. 6, pp. 3120–3122, 1988.
  • S. S. Ge, F. Hong, and T. H. Lee, “Adaptive neural control of nonlinear time-delay systems with unknown virtual control coefficients,” IEEE Transactions on Systems, Man, and Cybernetics B, vol. 34, no. 1, pp. 499–516, 2004.
  • M. M. Polycarpou and P. A. Ioannou, “A robust adaptive nonlinear control design,” Automatica, vol. 32, no. 3, pp. 423–427, 1996.
  • E. P. Ryan, “A universal adaptive stabilizer for a class of nonlinear systems,” Systems and Control Letters, vol. 16, no. 3, pp. 209–218, 1991. \endinput