Abstract and Applied Analysis

Bernoulli Identities and Combinatoric Convolution Sums with Odd Divisor Functions

Daeyeoul Kim and Yoon Kyung Park

Full-text: Open access

Abstract

We study the combinatoric convolution sums involving odd divisor functions, their relations to Bernoulli numbers, and some interesting applications.

Article information

Source
Abstr. Appl. Anal., Volume 2014, Special Issue (2013), Article ID 890973, 8 pages.

Dates
First available in Project Euclid: 26 March 2014

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1395858387

Digital Object Identifier
doi:10.1155/2014/890973

Mathematical Reviews number (MathSciNet)
MR3166664

Zentralblatt MATH identifier
07023248

Citation

Kim, Daeyeoul; Park, Yoon Kyung. Bernoulli Identities and Combinatoric Convolution Sums with Odd Divisor Functions. Abstr. Appl. Anal. 2014, Special Issue (2013), Article ID 890973, 8 pages. doi:10.1155/2014/890973. https://projecteuclid.org/euclid.aaa/1395858387


Export citation

References

  • S. Ramanujan, “On certain arithmetical functions,” Transactions of the Cambridge Philosophical Society, vol. 22, pp. 159–184, 1916.
  • S. Alaca and K. S. Williams, “Evaluation of the convolution sums $\sum _{l+6m=n}\sigma (l)\sigma (m)$ and $\sum _{2l+3m=n}\sigma (l)\sigma (m)$,” Journal of Number Theory, vol. 124, no. 2, pp. 491–510, 2007.
  • H. Hahn, “Convolution sums of some functions on divisors,” The Rocky Mountain Journal of Mathematics, vol. 37, no. 5, pp. 1593–1622, 2007.
  • J. W. L. Glaisher, “Expressions for the five powers of the series in which the coefficients are the sums of the divisors of the exponents,” Messenger of Mathematics, vol. 15, pp. 33–36, 1885.
  • J. W. L. Glaisher, “On certain sums of products of quantities depending upon the divisors of a number,” Messenger of Mathematics, vol. 15, pp. 1–20, 1885.
  • J. W. L. Glaisher, “On the square of the series in which the coefficients are the sums of the divisors of the exponents,” Messenger of Mathematics, vol. 14, pp. 156–163, 1884.
  • B. Cho, D. Kim, and H. Park, “Evaluation of a certain combinatorial convolution sum in higher level cases,” Journal of Mathematical Analysis and Applications, vol. 406, no. 1, pp. 203–210, 2013.
  • D. Kim and A. Bayad, “Convolution identities for twisted Eisenstein series and twisted divisor functions,” Fixed Point Theory and Applications, vol. 2013, article 81, 2013.
  • D. Kim, A. Kim, and A. Sankaranarayanan, “Bernoulli numbers, convolution sums and congruences of coefficients for certain generating functions,” Journal of Inequalities and Applications, vol. 2013, article 225, 2013.
  • K. S. Williams, Number Theory in the Spirit of Liouville, vol. 76 of London Mathematical Society Student Texts, Cambridge University Press, Cambridge, UK, 2011. \endinput