Abstract and Applied Analysis

Automorphisms of Ordinary Differential Equations

Václav Tryhuk and Veronika Chrastinová

Full-text: Open access

Abstract

The paper deals with the local theory of internal symmetries of underdetermined systems of ordinary differential equations in full generality. The symmetries need not preserve the choice of the independent variable, the hierarchy of dependent variables, and the order of derivatives. Internal approach to the symmetries of one-dimensional constrained variational integrals is moreover proposed without the use of multipliers.

Article information

Source
Abstr. Appl. Anal., Volume 2014, Special Issue (2013), Article ID 482963, 32 pages.

Dates
First available in Project Euclid: 26 March 2014

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1395858038

Digital Object Identifier
doi:10.1155/2014/482963

Mathematical Reviews number (MathSciNet)
MR3166619

Zentralblatt MATH identifier
07022463

Citation

Tryhuk, Václav; Chrastinová, Veronika. Automorphisms of Ordinary Differential Equations. Abstr. Appl. Anal. 2014, Special Issue (2013), Article ID 482963, 32 pages. doi:10.1155/2014/482963. https://projecteuclid.org/euclid.aaa/1395858038


Export citation

References

  • E. Cartan, “Les systèmes de Pfaff, à cinq variables et les équations aux dérivées partielles du second ordre,” Annales Scientifiques de l'École Normale Supérieure. Troisième Série, vol. 27, pp. 109–192, 1910.
  • V. Tryhuk and V. Chrastinová, “Automorphisms of curves,” Journal of Nonlinear Mathematical Physics, vol. 16, no. 3, pp. 259–281, 2009.
  • V. Chrastinová and V. Tryhuk, “Automorphisms of submanifolds,” Advances in Difference Equations, vol. 2010, Article ID 202731, 26 pages, 2010.
  • V. Tryhuk and V. Chrastinová, “On the mapping of jet spaces,” Journal of Nonlinear Mathematical Physics, vol. 17, no. 3, pp. 293–310, 2010.
  • V. Tryhuk, V. Chrastinová, and O. Dlouhý, “The Lie group in infinite dimension,” Abstract and Applied Analysis, vol. 2011, Article ID 919538, 35 pages, 2011.
  • P. J. Olver, Applications of Lie Groups to Differential Equations, vol. 107 of Graduate Texts in Mathematics, Springer, New York, NY, USA, 1986.
  • N. Kamran, Selected Topics in the Geometrical Study of Differential Equations, vol. 96 of CBMS Regional Conference Series in Mathematics, American Mathematical Society, Providence, RI, USA, 2002.
  • I. S. Krasil'shchik, V. V. Lychagin, and A. M. Vinogradov, “Geometry of jet spaces and nonlinear partial differential equations,” in Advanced Studies in Contemporary Mathematics, p. 441, Gordon and Breach Science Publishers, New York, NY, USA, 1986.
  • J. Chrastina, The Formal Theory of Differential Equations, vol. 6 of Folia Facultatis Scientiarium Naturalium Universitatis Masarykianae Brunensis. Mathematica, Masaryk University, Brno, Czech Republic, 1998.
  • S. Lie and G. Scheffers, Geometrie der Berürungstransformationen, Leipzig, Teubner, 1896.
  • É. Goursat, “Leçons sur l'intégration des équations aux dérivées partielles premier ordre,” Paris 1891; Zweite Auflage, J. Hermann, Paris, France, 1920.
  • R. Montgomery, A Tour of Subriemannian Geometries, vol. 91 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, USA, 2002.
  • V. Chrastinová and V. Tryhuk, “On the Mayer problem–-I. General principles,” Mathematica Slovaca, vol. 52, no. 5, pp. 555–570, 2002.
  • E. Cartan, “Le calcul des variations et certaines familles de courbes,” Bulletin de la Société Mathématique de France, vol. 39, pp. 29–52, 1911.
  • E. Cartan, “Sur l'equivalence absolu de certains systémes d'equations différentielles at sur certaines familles de courbes,” Bulletin de la Société Mathématique de France, vol. 42, pp. 12–48, 1914.
  • R. B. Gardner, The Method of Equivalence and Its Applications, vol. 58 of CBMS-NSF Regional Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, Pa, USA, 1989.
  • E. Cartan, “Sur quelques quadratures dont l'élément différentiel contient des fonctions arbitraires,” Bulletin de la Société Mathématique de France, vol. 29, pp. 118–130, 1901.
  • J. Chrastina, “Examples from the calculus of variations–-I. Nondegenerate problems,” Mathematica Bohemica, vol. 125, no. 1, pp. 55–76, 2000.
  • J. Chrastina, “Examples from the calculus of variations–-II. A degenerate problem,” Mathematica Bohemica, vol. 125, no. 2, pp. 187–197, 2000.
  • J. Chrastina, “Examples from the calculus of variations–-III. Legendre and Jacobi conditions,” Mathematica Bohemica, vol. 126, no. 1, pp. 93–111, 2001.
  • J. Chrastina, “Examples from the čommentComment on ref. [19d?]: We split this reference to [19a, 19b, 19c, 19d?]. Please check. calculus of variations–-IV. Concluding review,” Mathematica Bohemica, vol. 126, no. 4, pp. 691–710, 2001.
  • P. A. Griffiths, “Exterior differential systems and the calculus of variations,” in Progress in Mathematics, vol. 25, p. 335, Birkhuser, Boston, Mass, USA, 1983.
  • E. Cartan, “Les sous-groupes des groupes continus de transformations,” Annales Scientifiques de l'École Normale Supérieure. Troisième Série, vol. 25, no. 3, pp. 57–194, 1908.
  • J.-B. Pomet, “A differential geometric setting for dynamic equivalence and dynamic linearization,” in Geometry in Nonlinear Control and Differential Inclusions, vol. 32, pp. 319–339, Banach Center Publication, 1995.
  • J.-B. Pomet, “A necessary condition for dynamic equivalence,” SIAM Journal on Control and Optimization, vol. 48, no. 2, pp. 925–940, 2009.
  • M. W. Stackpole, “Dynamic equivalence of control systems via infinite prolongation,” to appear in Asian Journal of Mathematics, http://arxiv.org/pdf/1106.5437.pdf.
  • J. Mikeš, A. Vanžurová, and I. Hinterleitner, Geodesic Mappings and Some Generalizations, Palacký University Olomouc, Faculty of Science, Olomouc, Czech Republic, 2009.
  • S. S. Chern, “The geometry of differential equation ${y}^{{'''}}=F(x,$ $y,{y}^{\prime },{y}^{{''}})$,” Bull Sci. Math, pp. 206–212, 1939. \endinput