Abstract and Applied Analysis

Generalized Outer Synchronization between Complex Networks with Unknown Parameters

Di Ning, Xiaoqun Wu, Jun-an Lu, and Hui Feng

Full-text: Open access

Abstract

As is well known, complex networks are ubiquitous in the real world. One network always behaves differently from but still coexists in balance with others. This phenomenon of harmonious coexistence between different networks can be termed as “generalized outer synchronization (GOS).” This paper investigates GOS between two different complex dynamical networks with unknown parameters according to two different methods. When the exact functional relations between the two networks are previously known, a sufficient criterion for GOS is derived based on Barbalat's lemma. If the functional relations are not known, the auxiliary-system method is employed and a sufficient criterion for GOS is derived. Numerical simulations are further provided to demonstrate the feasibility and effectiveness of the theoretical results.

Article information

Source
Abstr. Appl. Anal., Volume 2013 (2013), Article ID 802859, 9 pages.

Dates
First available in Project Euclid: 27 February 2014

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1393512230

Digital Object Identifier
doi:10.1155/2013/802859

Mathematical Reviews number (MathSciNet)
MR3147822

Zentralblatt MATH identifier
07095369

Citation

Ning, Di; Wu, Xiaoqun; Lu, Jun-an; Feng, Hui. Generalized Outer Synchronization between Complex Networks with Unknown Parameters. Abstr. Appl. Anal. 2013 (2013), Article ID 802859, 9 pages. doi:10.1155/2013/802859. https://projecteuclid.org/euclid.aaa/1393512230


Export citation

References

  • L. M. Pecora and T. L. Carroll, “Synchronization in chaotic systems,” Physical Review Letters, vol. 64, no. 8, pp. 821–824, 1990.
  • L. M. Pecora and T. L. Carroll, “Master stability functions for synchronized coupled systems,” Physical Review Letters, vol. 80, no. 10, pp. 2109–2112, 1998.
  • M. Barahona and L. M. Pecora, “Synchronization in small-world systems,” Physical Review Letters, vol. 89, no. 5, Article ID 054101, 4 pages, 2002.
  • Y. Chen, G. Rangarajan, and M. Ding, “General stability analysis of synchronized dynamics in coupled systems,” Physical Review E, vol. 67, no. 2, Article ID 026209, 4 pages, 2003.
  • C. W. Wu and L. O. Chua, “Synchronization in an array of linearly coupled dynamical systems,” IEEE Transactions on Circuits and Systems I, vol. 42, no. 8, pp. 430–447, 1995.
  • J. Lü and G. Chen, “A time-varying complex dynamical network model and its controlled synchronization criteria,” IEEE Transactions on Automatic Control, vol. 50, no. 6, pp. 841–846, 2005.
  • J. Zhou, J. Lu, and J. Lü, “Adaptive synchronization of an uncertain complex dynamical network,” IEEE Transactions on Automatic Control, vol. 51, no. 4, pp. 652–656, 2006.
  • C. Li, W. Sun, and J. Kurths, “Synchronization between two coupled complex networks,” Physical Review E, vol. 76, no. 4, Article ID 046204, 6 pages, 2007.
  • H. Tang, L. Chen, J. Lu, and C. K. Tse, “Adaptive synchronization between two complex networks with nonidentical topological structures,” Physica A, vol. 387, no. 22, pp. 5623–5630, 2008.
  • X. Wu, W. X. Zheng, and J. Zhou, “Generalized outer synchronization between complex dynamical networks,” Chaos, vol. 19, no. 1, Article ID 013109, 9 pages, 2009.
  • N. F. Rulkov, M. M. Sushchik, L. S. Tsimring, and H. D. I. Abarbanel, “Generalized synchronization of chaos in directionally coupled chaotic systems,” Physical Review E, vol. 51, no. 2, pp. 980–994, 1995.
  • H. Suetani, Y. Iba, and K. Aihara, “Detecting generalized synchronization between chaotic signals: a kernel-based approach,” Journal of Physics A, vol. 39, no. 34, pp. 10723–10742, 2006.
  • H. D. I. Abarbanel, N. F. Rulkov, and M. M. Sushchik, “Generalized synchronization of chaos: the auxiliary system approach,” Physical Review E, vol. 53, no. 5, pp. 4528–4535, 1996.
  • Y. Hung, Y. Huang, M. Ho, and C. Hu, “Paths to globally generalized synchronization in scale-free networks,” Physical Review E, vol. 77, no. 1, Article ID 016202, 8 pages, 2008.
  • S. Guan, X. Wang, X. Gong, K. Li, and C. Lai, “The development of generalized synchronization on complex networks,” Chaos, vol. 19, no. 1, Article ID 013130, 2009.
  • X. Xu, Z. Chen, G. Si, X. Hu, and P. Luo, “A novel definition of generalized synchronization on networks and a numerical simulation example,” Computers & Mathematics with Applications, vol. 56, no. 11, pp. 2789–2794, 2008.
  • J. Chen, J. Lu, X. Wu, and W. X. Zheng, “Generalized synchronization of complex dynamical networks via impulsive control,” Chaos, vol. 19, no. 4, Article ID 043119, 2009.
  • H. Liu, J. Chen, J. Lu, and M. Cao, “Generalized synchronization in complex dynamical networks via adaptive couplings,” Physica A, vol. 389, no. 8, pp. 1759–1770, 2010.
  • Y. Sun, W. Li, and J. Ruan, “Generalized outer synchronization between complex dynamical networks with time delay and noise perturbation,” Communications in Nonlinear Science and Numerical Simulation, vol. 18, no. 4, pp. 989–998, 2013.
  • Y. Wu, C. Li, Y. Wu, and J. Kurths, “Generalized synchronization between two different complex networks,” Communications in Nonlinear Science and Numerical Simulation, vol. 17, no. 1, pp. 349–355, 2012.
  • N. Jia and T. Wang, “Generation and modified projective synchronization for a class of new hyperchaotic systems,” Abstract and Applied Analysis, vol. 2013, Article ID 804964, 11 pages, 2013.
  • W. He and J. Cao, “Generalized synchronization of chaotic systems: an auxiliary system approach via matrix measure,” Chaos, vol. 19, no. 1, 10 pages, 2009.
  • G. Peng, Y. Jiang, and F. Chen, “Generalized projective synchronization of fractional order chaotic systems,” Physica A, vol. 387, no. 14, pp. 3738–3746, 2008.
  • L. Kocarev and U. Parlitz, “Generalized synchronization, predictability, and equivalence of unidirectionally coupled dynamical systems,” Physical Review Letters, vol. 76, no. 11, pp. 1816–1819, 1996.
  • D. Watts and S. Strogatz, “Collective dynamics of “small-world” networks,” Nature, vol. 393, no. 4, pp. 440–442, 1998.
  • E. N. Lorenz, “Deterministic nonperiodic flow,” Journal of the Atmospheric Sciences, vol. 20, no. 2, pp. 130–141, 1963.
  • G. Chen and T. Ueta, “Yet another chaotic attractor,” International Journal of Bifurcation and Chaos, vol. 9, no. 7, pp. 1465–1466, 1999. \endinput