Abstract and Applied Analysis

Sequential Generalized Transforms on Function Space

Jae Gil Choi, Hyun Soo Chung, and Seung Jun Chang

Full-text: Open access

Abstract

We define two sequential transforms on a function space C a,b [ 0 , T ] induced by generalized Brownian motion process. We then establish the existence of the sequential transforms for functionals in a Banach algebra of functionals on C a,b [ 0 , T ] . We also establish that any one of these transforms acts like an inverse transform of the other transform. Finally, we give some remarks about certain relations between our sequential transforms and other well-known transforms on C a,b [ 0 , T ] .

Article information

Source
Abstr. Appl. Anal., Volume 2013 (2013), Article ID 565832, 12 pages.

Dates
First available in Project Euclid: 27 February 2014

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1393512192

Digital Object Identifier
doi:10.1155/2013/565832

Mathematical Reviews number (MathSciNet)
MR3139459

Zentralblatt MATH identifier
1296.46041

Citation

Choi, Jae Gil; Chung, Hyun Soo; Chang, Seung Jun. Sequential Generalized Transforms on Function Space. Abstr. Appl. Anal. 2013 (2013), Article ID 565832, 12 pages. doi:10.1155/2013/565832. https://projecteuclid.org/euclid.aaa/1393512192


Export citation

References

  • R. H. Cameron, “Some examples of Fourier-Wiener transforms of analytic functionals,” Duke Mathematical Journal, vol. 12, no. 3, pp. 485–488, 1945.
  • R. H. Cameron and W. T. Martin, “Fourier-Wiener transforms of analytic functionals,” Duke Mathematical Journal, vol. 12, pp. 489–507, 1945.
  • R. H. Cameron and W. T. Martin, “Fourier-Wiener transforms of functionals belonging to ${L}_{2}$ over the space $C$,” Duke Mathematical Journal, vol. 14, no. 1, pp. 99–107, 1947.
  • M. D. Brue, A functional transform for Feynman integrals similar to the Fourier transform [Thesis], University of Minnesota, St. Paul, Minn, USA, 1972.
  • R. H. Cameron and D. A. Storvick, “An ${L}_{2}$ analytic Fourier-Feynman transform,” The Michigan Mathematical Journal, vol. 23, no. 1, pp. 1–30, 1976.
  • G. W. Johnson and D. L. Skoug, “An ${L}_{p}$ analytic Fourier-Feynman transform,” The Michigan Mathematical Journal, vol. 26, no. 1, pp. 103–127, 1979.
  • Y.-J. Lee, “Integral transforms of analytic functions on abstract Wiener spaces,” Journal of Functional Analysis, vol. 47, no. 2, pp. 153–164, 1982.
  • Y.-J. Lee, “Unitary operators on the space of ${L}^{2}$-functions over abstract Wiener spaces,” Soochow Journal of Mathematics, vol. 13, no. 2, pp. 165–174, 1987.
  • B. S. Kim and D. Skoug, “Integral transforms of functionals in ${L}_{2}({C}_{0}[0,T])$,” The Rocky Mountain Journal of Mathematics, vol. 33, no. 4, pp. 1379–1393, 2003.
  • S. J. Chang, H. S. Chung, and D. Skoug, “Convolution products, integral transforms and inverse integral transforms of functionals in ${L}_{2}({C}_{0}[0,T])$,” Integral Transforms and Special Functions, vol. 21, no. 1-2, pp. 143–151, 2010.
  • D. Skoug and D. Storvick, “A survey of results involving transforms and convolutions in function space,” The Rocky Mountain Journal of Mathematics, vol. 34, no. 3, pp. 1147–1175, 2004.
  • S. J. Chang and D. Skoug, “Generalized Fourier-Feynman transforms and a first variation on function space,” Integral Transforms and Special Functions, vol. 14, no. 5, pp. 375–393, 2003.
  • S. J. Chang, J. G. Choi, and D. Skoug, “Integration by parts formulas involving generalized Fourier-Feynman transforms on function space,” Transactions of the American Mathematical Society, vol. 355, no. 7, pp. 2925–2948, 2003.
  • S. J. Chang, J. G. Choi, and D. Skoug, “Generalized Fourier-Feynman transforms, convolution products, and first variations on function space,” The Rocky Mountain Journal of Mathematics, vol. 40, no. 3, pp. 761–788, 2010.
  • S. J. Chang, H. S. Chung, and D. Skoug, “Integral transforms of functionals in ${L}^{2}({C}_{a,b}[0,T])$,” The Journal of Fourier Analysis and Applications, vol. 15, no. 4, pp. 441–462, 2009.
  • S. J. Chang, H. S. Chung, and D. Skoug, “Some basic relationships among transforms, convolution products, first variations and inverse transforms,” Central European Journal of Mathematics, vol. 11, no. 3, pp. 538–551, 2013.
  • J. Yeh, “Singularity of Gaussian measures on function spaces induced by Brownian motion processes with non-stationary increments,” Illinois Journal of Mathematics, vol. 15, pp. 37–46, 1971.
  • J. Yeh, Stochastic Processes and the Wiener Integral, Marcel Dekker, New York, NY, USA, 1973.
  • S. J. Chang and D. M. Chung, “Conditional function space integrals with applications,” The Rocky Mountain Journal of Mathematics, vol. 26, no. 1, pp. 37–62, 1996.
  • L. A. Shepp, “Radon-Nikodym derivatives of Gaussian measures,” Annals of Mathematical Statistics, vol. 37, pp. 321–354, 1966.
  • R. H. Cameron and D. A. Storvick, A Simple Definition of the Feynman Integral With Applications, vol. 46 of no. 288 of Memoirs of the American Mathematical Society, American Mathematical Society, Providence, RI, USA, 1983.
  • R. P. Feynman, “Space-time approach to non-relativistic quantum mechanics,” Reviews of Modern Physics, vol. 20, pp. 367–387, 1948.
  • R. H. Cameron, “A family of integrals serving to connect the Wiener and Feynman integrals,” Journal of Mathematics and Physics, vol. 39, pp. 126–140, 1960.