Abstract and Applied Analysis

Existence of Nontrivial Solutions and High Energy Solutions for a Class of Quasilinear Schrödinger Equations via the Dual-Perturbation Method

Yu Chen and Xian Wu

Full-text: Open access

Abstract

We study the quasilinear Schrödinger equation of the form Δ u + V x u Δ u 2 u = h x , u , x R N . Under appropriate assumptions on V x and h x , u , existence results of nontrivial solutions and high energy solutions are obtained by the dual-perturbation method.

Article information

Source
Abstr. Appl. Anal., Volume 2013 (2013), Article ID 256324, 13 pages.

Dates
First available in Project Euclid: 27 February 2014

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1393512098

Digital Object Identifier
doi:10.1155/2013/256324

Mathematical Reviews number (MathSciNet)
MR3121525

Zentralblatt MATH identifier
1294.35020

Citation

Chen, Yu; Wu, Xian. Existence of Nontrivial Solutions and High Energy Solutions for a Class of Quasilinear Schrödinger Equations via the Dual-Perturbation Method. Abstr. Appl. Anal. 2013 (2013), Article ID 256324, 13 pages. doi:10.1155/2013/256324. https://projecteuclid.org/euclid.aaa/1393512098


Export citation

References

  • S. Kurihura, “Large-amplitude quasi-solitons in superfluid films,” Journal of the Physical Society of Japan, vol. 50, pp. 3262–3267, 1981.
  • E. W. Laedke, K. H. Spatschek, and L. Stenflo, “Evolution theorem for a class of perturbed envelope soliton solutions,” Journal of Mathematical Physics, vol. 24, no. 12, pp. 2764–2769, 1983.
  • A. G. Litvak and A. M. Sergeev, “One dimensional collapse of plasma waves,” JETP Letters, vol. 27, pp. 517–520, 1978.
  • A. Nakamura, “Damping andmod ification of exciton solitary waves,” Journal of the Physical Society of Japan, vol. 42, pp. 1824–1835, 1977.
  • M. Porkolab and M. V. Goldman, “Upper-hybrid solitons and oscillating-two-stream instabilities,” The Physics of Fluids, vol. 19, no. 6, pp. 872–881, 1976.
  • J. Liu and Z. Q. Wang, “Soliton solutions for quasilinear Schrödinger equations. I,” Proceedings of the American Mathematical Society, vol. 131, no. 2, pp. 441–448, 2003.
  • M. Poppenberg, K. Schmitt, and Z. Q. Wang, “On the existence of soliton solutions to quasilinear Schrödinger equations,” Calculus of Variations and Partial Differential Equations, vol. 14, no. 3, pp. 329–344, 2002.
  • J. M. B. do Ó, O. H. Miyagaki, and S. H. M. Soares, “Soliton solutions for quasilinear Schrödinger equations with critical growth,” Journal of Differential Equations, vol. 248, no. 4, pp. 722–744, 2010.
  • M. Colin and L. Jeanjean, “Solutions for a quasilinear Schrödinger equation: a dual approach,” Nonlinear Analysis: Theory, Methods & Applications, vol. 56, no. 2, pp. 213–226, 2004.
  • J. Q. Liu, Y. Q. Wang, and Z. Q. Wang, “Soliton solutions for quasilinear Schrödinger equations. II,” Journal of Differential Equations, vol. 187, no. 2, pp. 473–493, 2003.
  • J. M. B. do Ó, O. H. Miyagaki, and S. H. M. Soares, “Soliton solutions for quasilinear Schrödinger equations: the critical exponential case,” Nonlinear Analysis: Theory, Methods & Applications, vol. 67, no. 12, pp. 3357–3372, 2007.
  • J. Q. Liu, Y. Q. Wang, and Z. Q. Wang, “Solutions for quasilinear Schrödinger equations via the Nehari method,” Communications in Partial Differential Equations, vol. 29, no. 5-6, pp. 879–901, 2004.
  • D. Ruiz and G. Siciliano, “Existence of ground states for a modified nonlinear Schrödinger equation,” Nonlinearity, vol. 23, no. 5, pp. 1221–1233, 2010.
  • J. Q. Liu, Z. Q. Wang, and Y. X. Guo, “Multibump solutions for quasilinear elliptic equations,” Journal of Functional Analysis, vol. 262, no. 9, pp. 4040–4102, 2012.
  • X. Q. Liu, J. Liu, and Z. Q. Wang, “Ground states for quasilinear Schrödinger equations with critical growth,” Calculus of Variations and Partial Differential Equations, vol. 46, no. 3-4, pp. 641–669, 2013.
  • X. Q. Liu, J. Q. Liu, and Z. Q. Wang, “Quasilinear elliptic equations via perturbation method,” Proceedings of the American Mathematical Society, vol. 141, no. 1, pp. 253–263, 2013.
  • W. M. Zou and M. Schechter, Critical Point Theory and Its Applications, Springer, New York, NY, USA, 2006.
  • M. Willem, Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications, 24, Birkhäuser, Boston, Mass, USA, 1996.
  • S. Wang, Introductions of Sobolev Spaces and Partial Differential Equation, Scientific Publishing House in China, 2009.
  • P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, vol. 65 of CBMS Regional Conference Series in Mathematics, American Mathematical Society, Providence, RI, USA, 1986.
  • A. Szulkin and T. Weth, “Ground state solutions for some indefinite variational problems,” Journal of Functional Analysis, vol. 257, no. 12, pp. 3802–3822, 2009.