Abstract and Applied Analysis

Global Attractor for Partial Functional Differential Equations with State-Dependent Delay

Zhimin He and Bo Du

Full-text: Open access

Abstract

This work aims to investigate the existence of global attractors for a class of partial functional differential equations with state-dependent delay. Using the classic theory about global attractors in infinite dimensional dynamical systems, we obtain some sufficient conditions for guaranteeing the existence of a global attractor.

Article information

Source
Abstr. Appl. Anal., Volume 2013 (2013), Article ID 805978, 6 pages.

Dates
First available in Project Euclid: 27 February 2014

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1393511997

Digital Object Identifier
doi:10.1155/2013/805978

Mathematical Reviews number (MathSciNet)
MR3090279

Citation

He, Zhimin; Du, Bo. Global Attractor for Partial Functional Differential Equations with State-Dependent Delay. Abstr. Appl. Anal. 2013 (2013), Article ID 805978, 6 pages. doi:10.1155/2013/805978. https://projecteuclid.org/euclid.aaa/1393511997


Export citation

References

  • F. Hartung, T. Krisztin, H.-O. Walther, and J. Wu, “Functional differential equations with state-dependent delays: theory and applications,” in Handbook of Differential Equations: Ordinary Differential Equations. Vol. III, pp. 435–545, Elsevier/North-Holland, Amsterdam, The Netherlands, 2006.
  • Y. Cao, J. Fan, and T. C. Gard, “The effects of state-dependent time delay on a stage-structured population growth model,” Nonlinear Analysis: Theory, Methods & Applications, vol. 19, no. 2, pp. 95–105, 1992.
  • F. Hartung, “Linearized stability in periodic functional differential equations with state-dependent delays,” Journal of Computational and Applied Mathematics, vol. 174, no. 2, pp. 201–211, 2005.
  • F. Hartung, “Parameter estimation by quasilinearization in functional differential equations with state-dependent delays: a numerical study,” in Proceedings of the Third World Congress of Nonlinear Analysts, Part 7 (Catania, 2000), vol. 47, 2001, Nonlinear Analysis TMA 47 (7), 4557–4566, 2001.
  • Y. Kuang and H. L. Smith, “Slowly oscillating periodic solutions of autonomous state-dependent delay equations,” Nonlinear Analysis: Theory, Methods & Applications, vol. 19, no. 9, pp. 855–872, 1992.
  • M. Adimy, K. Ezzinbi, and J. Wu, “Center manifold and stability in critical cases for for some partial functional differential equations,” International Journal of Evolution Equations, vol. 2, pp. 69–95, 2006.
  • M. Adimy, A. Elazzouzi, and K. Ezzinbi, “Bohr-Neugebauer type theorem for some partial neutral functional differential equations,” Nonlinear Analysis: Theory, Methods & Applications, vol. 66, no. 5, pp. 1145–1160, 2007.
  • J. K. Hale, Asymptotic Behavior of Dissipative Systems, vol. 25 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, USA, 1988.
  • J. E. Billotti and J. P. LaSalle, “Dissipative periodic processes,” Bulletin of the American Mathematical Society, vol. 77, pp. 1082–1088, 1971.
  • C. Corduneanu, Principles of Differential and Integral Equations, Allyn and Bacon, Boston, Mass, USA, 1971.