Abstract and Applied Analysis

On Certain Inequalities for Neuman-Sándor Mean

Wei-Mao Qian and Yu-Ming Chu

Full-text: Open access

Abstract

We present several new sharp bounds for Neuman-Sándor mean in terms of arithmetic, centroidal, quadratic, harmonic root square, and contraharmonic means.

Article information

Source
Abstr. Appl. Anal., Volume 2013 (2013), Article ID 790783, 6 pages.

Dates
First available in Project Euclid: 27 February 2014

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1393511908

Digital Object Identifier
doi:10.1155/2013/790783

Mathematical Reviews number (MathSciNet)
MR3064343

Zentralblatt MATH identifier
1276.26060

Citation

Qian, Wei-Mao; Chu, Yu-Ming. On Certain Inequalities for Neuman-Sándor Mean. Abstr. Appl. Anal. 2013 (2013), Article ID 790783, 6 pages. doi:10.1155/2013/790783. https://projecteuclid.org/euclid.aaa/1393511908


Export citation

References

  • E. Neuman and J. Sándor, “On the Schwab-Borchardt mean,” Mathematica Pannonica, vol. 14, no. 2, pp. 253–266, 2003.
  • E. Neuman and J. Sándor, “On the Schwab-Borchardt mean. II,” Mathematica Pannonica, vol. 17, no. 1, pp. 49–59, 2006.
  • Y.-M. Li, B.-Y. Long, and Y.-M. Chu, “Sharp bounds for the Neuman-Sádor mean in terms of generalized logarithmic mean,” Journal of Mathematical Inequalities, vol. 6, no. 4, pp. 567–577, 2012.
  • E. Neuman, “A note on a certain bivariate mean,” Journal of Mathematical Inequalities, vol. 6, no. 4, pp. 637–643, 2012.
  • Y.-M. Chu, B.-Y. Long, W.-M. Gong, and Y.-Q. Song, “Sharp bounds for Seiffert and Neuman-Sándor means in terms of generalized logarithmic means,” Journal of Inequalities and Applications, vol. 2013, 10 pages, 2013.
  • Y.-M. Chu and B.-Y. Long, “Bounds of the Neuman-Sándor mean using power and identric means,” Abstract and Applied Analysis, vol. 2013, Article ID 832591, 6 pages, 2013.
  • T.-H. Zhao, Y.-M. Chu, and B.-Y. Liu, “Optimal bounds for Neuman-Sándor mean in terms of the convex combinations of harmonic, geometric, quadratic, and contraharmonic means,” Abstract and Applied Analysis, Article ID 302635, 9 pages, 2012.
  • T.-H. Zhao, Y.-M. Chu, Y.-L. Jiang, and Y.-M. Li, “Best possible bounds for Neuman-Sándor mean by the identric, quadratic and contraharmonic means,” Abstract and Applied Analysis, vol. 2013, Article ID 348326, 12 pages, 2013.
  • Z.-Y. He, W.-M. Qian, Y.-L. Jiang, Y.-Q. Song, and Y.-M. Chu, “Bounds for the combinations of Neuman-Sándor, arithmetic and second Seiffer means in terms of contraharmonic mean,” Abstract and Applied Analysis, vol. 2013, Article ID 903982, 5 pages, 2013.
  • G. D. Anderson, M. K. Vamanamurthy, and M. K. Vuorinen, Conformal Invariants, Inequalities, and Quasiconformal Maps, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, New York, NY, USA, 1997.
  • S. Simić and M. Vuorinen, “Landen inequalities for zero-balanced hypergeometric functions,” Abstract and Applied Analysis, vol. 2012, Article ID 932061, 11 pages, 2012.