Abstract and Applied Analysis

A Common Fixed Point Theorem in Fuzzy Metric Spaces with Nonlinear Contractive Type Condition Defined Using Φ-Function

Siniša N. Ješić, Nataša A. Babačev, and Rale M. Nikolić

Full-text: Open access

Abstract

This paper is to present a common fixed point theorem for two R-weakly commuting self-mappings satisfying nonlinear contractive type condition defined using a Φ-function, defined on fuzzy metric spaces. Some comments on previously published results and some examples are given.

Article information

Source
Abstr. Appl. Anal., Volume 2013 (2013), Article ID 273872, 6 pages.

Dates
First available in Project Euclid: 27 February 2014

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1393511765

Digital Object Identifier
doi:10.1155/2013/273872

Mathematical Reviews number (MathSciNet)
MR3035225

Zentralblatt MATH identifier
1273.54059

Citation

Ješić, Siniša N.; Babačev, Nataša A.; Nikolić, Rale M. A Common Fixed Point Theorem in Fuzzy Metric Spaces with Nonlinear Contractive Type Condition Defined Using Φ -Function. Abstr. Appl. Anal. 2013 (2013), Article ID 273872, 6 pages. doi:10.1155/2013/273872. https://projecteuclid.org/euclid.aaa/1393511765


Export citation

References

  • L. A. Zadeh, “Fuzzy sets,” Information and Computation, vol. 8, pp. 338–353, 1965.
  • O. Kaleva and S. Seikkala, “On fuzzy metric spaces,” Fuzzy Sets and Systems, vol. 12, no. 3, pp. 215–229, 1984.
  • I. Kramosil and J. Michálek, “Fuzzy metrics and statistical metric spaces,” Kybernetika, vol. 11, no. 5, pp. 336–344, 1975.
  • A. George and P. Veeramani, “On some results in fuzzy metric spaces,” Fuzzy Sets and Systems, vol. 64, no. 3, pp. 395–399, 1994.
  • B. Schweizer and A. Sklar, Probabilistic Metric Spaces, Elsevier, New York, NY, USA, 1983.
  • M. Grabiec, “Fixed points in fuzzy metric spaces,” Fuzzy Sets and Systems, vol. 27, no. 3, pp. 385–389, 1988.
  • A. George and P. Veeramani, “On some results of analysis for fuzzy metric spaces,” Fuzzy Sets and Systems, vol. 90, no. 3, pp. 365–368, 1997.
  • S. N. Ješić and N. A. Babačev, “Common fixed point theorems in intuitionistic fuzzy metric spaces and $\mathcal{L}$-fuzzy metric spaces with nonlinear contractive condition,” Chaos, Solitons and Fractals, vol. 37, no. 3, pp. 675–687, 2008.
  • S. N. Ješić, N. A. Babačev, D. O'Regan, and R. M. Nikolić, “Common fixed point theorems for four mappings defined on $L$-fuzzy metric spaces with nonlinear contractive type condition,” Fixed Point Theory, vol. 10, no. 2, pp. 259–274, 2009.
  • Y. Shen, W. Chen, and S. Wang, “A note on “Common fixed point theorems for commutating mappings in fuzzy metric spaces”,” Abstract and Applied Analysis, vol. 2012, Article ID 142858, 7 pages, 2012.
  • F. M. Zheng and X. G. Lian, “Common fixed point theorems for commutating mappings in fuzzy metric spaces,” Abstract and Applied Analysis, vol. 2012, Article ID 729758, 5 pages, 2012.
  • D. Miheţ, “Altering distances in probabilistic Menger spaces,” Nonlinear Analysis. Theory, Methods & Applications A, vol. 71, no. 7-8, pp. 2734–2738, 2009.
  • M. S. Khan, M. Swaleh, and S. Sessa, “Fixed point theorems by altering distances between the points,” Bulletin of the Australian Mathematical Society, vol. 30, no. 1, pp. 1–9, 1984.
  • B. S. Choudhury and K. Das, “A new contraction principle in Menger spaces,” Acta Mathematica Sinica (English Series), vol. 24, no. 8, pp. 1379–1386, 2008.
  • R. P. Pant, “Common fixed points of noncommuting mappings,” Journal of Mathematical Analysis and Applications, vol. 188, no. 2, pp. 436–440, 1994.
  • R. Vasuki, “Common fixed points for $R$-weakly commuting maps in fuzzy metric spaces,” Indian Journal of Pure and Applied Mathematics, vol. 30, no. 4, pp. 419–423, 1999.