Abstract and Applied Analysis

Estimating Quartz Reserves Using Compositional Kriging

J. Taboada, Á. Saavedra, C. Iglesias, and E. Giráldez

Full-text: Open access


The aim of this study was to determine spatial distribution and volume of four commercial quartz grades, namely, silicon metal, ferrosilicon, aggregate, and kaolin (depending on content in impurities) in a quartz seam. The chemical and mineralogical composition of the reserves in the seam were determined from samples collected from outcrops, blasting operations, and exploratory drilling, and compositional kriging was used to calculate the volume and distribution of the reserves. A more accurate knowledge of the deposit ensures better mine planning, leading to higher profitability and an improved relationship with the environment.

Article information

Abstr. Appl. Anal., Volume 2013, Special Issue (2012), Article ID 716593, 6 pages.

First available in Project Euclid: 26 February 2014

Permanent link to this document

Digital Object Identifier


Taboada, J.; Saavedra, Á.; Iglesias, C.; Giráldez, E. Estimating Quartz Reserves Using Compositional Kriging. Abstr. Appl. Anal. 2013, Special Issue (2012), Article ID 716593, 6 pages. doi:10.1155/2013/716593. https://projecteuclid.org/euclid.aaa/1393450462

Export citation


  • P. Diamond, “Fuzzy kriging,” Fuzzy Sets and Systems, vol. 33, no. 3, pp. 315–332, 1989.
  • V. Pawlowsky-Glahn and R. A. Olea, Geostatistical Analysis of Compositional Data. Studies in Mathematical Geology, vol. 7, Oxford University Press, Oxford, UK, 2004.
  • R. Tolosana-Delgado, Geostatistics for constrained variables: positive data, compositions and probabilities. Application to environmental hazard monitoring [Ph.D. thesis], Universitat de Girona, Girona, Spain, 2006.
  • D. J. J. Walvoort and J. J. de Gruijter, “Compositional kriging: a spatial interpolation method for compositional data,” Mathematical Geology, vol. 33, no. 8, pp. 951–966, 2001.
  • M. Badel, S. Angorani, and M. Shariat Panahi, “The application of median indicator kriging and neural network in modeling mixed population in an iron ore deposit,” Computers and Geosciences, vol. 37, no. 4, pp. 530–540, 2011.
  • B. Sohrabian and Y. Ozcelik, “Determination of exploitable blocks in an andesite quarry using independent component kriging,” International Journal of Rock Mechanics & Mining Sciences, vol. 55, pp. 71–79, 2012.
  • J. Taboada, T. Rivas, A. Saavedra, C. Ordóñez, F. Bastante, and E. Giráldez, “Evaluation of the reserve of a granite deposit by fuzzy kriging,” Engineering Geology, vol. 99, no. 1-2, pp. 23–30, 2008.
  • Á. Saavedra, C. Ordóñez, J. Taboada, and J. Armesto, “Compositional kriging applied to the reserve estimation of a granite deposit,” Dyna, vol. 77, no. 161, pp. 53–60, 2010.
  • A. Saavedra, C. Ordóñez, J. Taboada, E. Giráldez, and C. Sierra, “Grade control in a quartz deposit using universal fuzzy kriging,” Dyna, vol. 178, pp. 61–69, 2013.
  • N. A. C. Cressie, Statistics for Spatial Data, John Wiley & Sons, New York, NY, USA, 1993.
  • J.-P. Chilès and P. Delfiner, Geostatistics: Modeling Spatial Uncertainty, John Wiley & Sons, New York, NY, USA, 1999.
  • J. Rivoirard, Introduction to Disjunctive Kriging and Nonlinear Geostatistics, Clarendom Press, Oxford, UK, 1999.
  • S. Zhang, S. Wang, N. Liu, N. Li, Y. Huang, and H. Ye, “Comparison of spatial prediction method for soil texture,” Transactions of the Chinese Society of Agricultural Engineering, vol. 27, no. 1, pp. 332–339, 2011.
  • H. Wackernagel, Multivariate Geostatistics, An Introduction With Applications, Springer, Berlin, Germany, 2nd edition, 1998.
  • R Development Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2012, http://www.R-project.org/.
  • R. Tolosana-Delgado, “Guía para el análisis espacial de datos composicionales,” Boletín Geológico Y Minero, vol. 122, no. 4, pp. 469–482, 2011.