Abstract and Applied Analysis

Traveling Wave Solutions in a Reaction-Diffusion Epidemic Model

Sheng Wang, Wenbin Liu, Zhengguang Guo, and Weiming Wang

Full-text: Open access

Abstract

We investigate the traveling wave solutions in a reaction-diffusion epidemic model. The existence of the wave solutions is derived through monotone iteration of a pair of classical upper and lower solutions. The traveling wave solutions are shown to be unique and strictly monotonic. Furthermore, we determine the critical minimal wave speed.

Article information

Source
Abstr. Appl. Anal., Volume 2013, Special Issue (2013), Article ID 216913, 13 pages.

Dates
First available in Project Euclid: 26 February 2014

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1393450357

Digital Object Identifier
doi:10.1155/2013/216913

Mathematical Reviews number (MathSciNet)
MR3044984

Zentralblatt MATH identifier
1291.35418

Citation

Wang, Sheng; Liu, Wenbin; Guo, Zhengguang; Wang, Weiming. Traveling Wave Solutions in a Reaction-Diffusion Epidemic Model. Abstr. Appl. Anal. 2013, Special Issue (2013), Article ID 216913, 13 pages. doi:10.1155/2013/216913. https://projecteuclid.org/euclid.aaa/1393450357


Export citation