Abstract and Applied Analysis

Scaling-Base Drive Function Projective Synchronization between Different Fractional-Order Chaotic Systems

Ping Zhou and Kun Huang

Full-text: Open access

Abstract

A new function projective synchronization scheme between different fractional-order chaotic systems, called scaling-base drive function projective synchronization (SBDFPS), is discussed. In this SBDFPS scheme, one fractional-order chaotic system is chosen as scaling drive system, one fractional-order chaotic system is chosen as base drive systems, and another fractional-order chaotic system is chosen as response system. The SBDFPS technique scheme is based on the stability theory of nonlinear fractional-order systems, and the synchronization technique is theoretically rigorous. Numerical experiments are presented and show the effectiveness of the SBDFPS scheme.

Article information

Source
Abstr. Appl. Anal., Volume 2013, Special Issue (2013), Article ID 521812, 5 pages.

Dates
First available in Project Euclid: 26 February 2014

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1393449803

Digital Object Identifier
doi:10.1155/2013/521812

Mathematical Reviews number (MathSciNet)
MR3139437

Zentralblatt MATH identifier
1302.34079

Citation

Zhou, Ping; Huang, Kun. Scaling-Base Drive Function Projective Synchronization between Different Fractional-Order Chaotic Systems. Abstr. Appl. Anal. 2013, Special Issue (2013), Article ID 521812, 5 pages. doi:10.1155/2013/521812. https://projecteuclid.org/euclid.aaa/1393449803


Export citation

References

  • L. M. Pecora and T. L. Carroll, “Synchronization in chaotic systems,” Physical Review Letters, vol. 64, no. 8, pp. 821–824, 1990.
  • T. L. Carroll and L. M. Pecora, “Synchronizing chaotic circuits,” IEEE Transactions on Circuits and Systems I, vol. 38, pp. 453–456, 1991.
  • L. Kacarev and U. Parlitz, “Generalized synchronization, predictability, and equivalence of unidirectionally coupled dynamical systems,” Physical Review Letters, vol. 76, pp. 1816–1819, 1996.
  • L. Kacarev and U. Parlitz, “General approach for chaotic synchronization, with application to communication,” Physical Review Letters, vol. 74, pp. 5028–5031, 1996.
  • R. Mainieri and J. Rehacek, “Projective synchronization in the three-dimensional chaotic systems,” Physical Review Letters, vol. 82, pp. 3042–3045, 1999.
  • H. Y. Du, Q. S. Zeng, C. H. Wang, and M. X. Ling, “Function projective synchronization in coupled chaotic systems,” Nonlinear Analysis. Real World Applications, vol. 11, no. 2, pp. 705–712, 2010.
  • P. Zhou and W. Zhu, “Function projective synchronization for fractional-order chaotic systems,” Nonlinear Analysis. Real World Applications, vol. 12, no. 2, pp. 811–816, 2011.
  • J. W. Sun, Y. Shen, Q. Yin, and C. J. Xu, “Compound synchronization of four memristor chaotic oscillator systems and secure communication,” Chaos, vol. 23, no. 1, Article ID 013140, 2013.
  • E. Ahmed, A. M. A. El-Sayed, and H. A. A. El-Saka, “Equilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies models,” Journal of Mathematical Analysis and Applications, vol. 325, no. 1, pp. 542–553, 2007.
  • Z. Odibat, “A note on phase synchronization in coupled chaotic fractional order systems,” Nonlinear Analysis. Real World Applications, vol. 13, no. 2, pp. 779–789, 2012.
  • A. S. Hegazi, E. Ahmed, and A. E. Matouk, “On chaos control and synchronization of the commensurate fractional order Liu system,” Communications in Nonlinear Science and Numerical Simulation, vol. 18, no. 5, pp. 1193–1202, 2013.
  • C. P. Li and G. J. Peng, “Chaos in Chen's system with a fractional order,” Chaos, Solitons & Fractals, vol. 22, no. 2, pp. 443–450, 2004.
  • W. H. Deng and C. P. Li, “Chaos synchronization of the fractional Lu system,” Physica A, vol. 353, pp. 61–72, 2005. \endinput