Abstract and Applied Analysis

Solving a Class of Singular Fifth-Order Boundary Value Problems Using Reproducing Kernel Hilbert Space Method

Yulan Wang, Shuai Lu, Fugui Tan, Mingjing Du, and Hao Yu

Full-text: Open access

Abstract

We use the reproducing kernel Hilbert space method to solve the fifth-order boundary value problems. The exact solution to the fifth-order boundary value problems is obtained in reproducing kernel space. The approximate solution is given by using an iterative method and the finite section method. The present method reveals to be more effective and convenient compared with the other methods.

Article information

Source
Abstr. Appl. Anal., Volume 2013, Special Issue (2013), Article ID 925192, 6 pages.

Dates
First available in Project Euclid: 26 February 2014

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1393449760

Digital Object Identifier
doi:10.1155/2013/925192

Mathematical Reviews number (MathSciNet)
MR3081577

Zentralblatt MATH identifier
07095496

Citation

Wang, Yulan; Lu, Shuai; Tan, Fugui; Du, Mingjing; Yu, Hao. Solving a Class of Singular Fifth-Order Boundary Value Problems Using Reproducing Kernel Hilbert Space Method. Abstr. Appl. Anal. 2013, Special Issue (2013), Article ID 925192, 6 pages. doi:10.1155/2013/925192. https://projecteuclid.org/euclid.aaa/1393449760


Export citation

References

  • R. Mokhtari, F. T. Isfahani, and M. Mohammadi, “Reproducing kernel method for solving nonlinear differential-difference equations,” Abstract and Applied Analysis, vol. 2012, Article ID 514103, 10 pages, 2012.
  • Y.-l. Wang and L. Chao, “Using reproducing kernel for solving a class of partial differential equation with variable-coefficients,” Applied Mathematics and Mechanics, vol. 29, no. 1, pp. 129–137, 2008.
  • Y. Wang, T. Chaolu, and Z. Chen, “Using reproducing kernel for solving a class of singular weakly nonlinear boundary value problems,” International Journal of Computer Mathematics, vol. 87, no. 2, pp. 367–380, 2010.
  • F. Z. Geng and X. M. Li, “A new method for Riccati differential equations based on reproducing kernel and quasilinearization methods,” Abstract and Applied Analysis, vol. 2012, Article ID 603748, 8 pages, 2012.
  • M. Mohammadi and R. Mokhtari, “Solving the generalized regularized long wave equation on the basis of a reproducing kernel space,” Journal of Computational and Applied Mathematics, vol. 235, no. 14, pp. 4003–4014, 2011.
  • Z. Li, Y. Wang, F. Tan, X. Wan, and T. Nie, “The solution of a class of singularly perturbed two-point boundary value problems by the iterative reproducing kernel method,” Abstract and Applied Analysis, vol. 2012, Article ID 984057, 7 pages, 2012.
  • X. Y. Li and B. Y. Wu, “A novel method for nonlinear singular fourth order four-point boundary value problems,” Computers & Mathematics with Applications, vol. 62, no. 1, pp. 27–31, 2011.
  • Y. Wang, X. Cao, and X. Li, “A new method for solving singular fourth-order boundary value problems with mixed boundary conditions,” Applied Mathematics and Computation, vol. 217, no. 18, pp. 7385–7390, 2011.
  • M. El-Gamel, “Sinc and the numerical solution of fifth-order boundary value problems,” Applied Mathematics and Computation, vol. 187, no. 2, pp. 1417–1433, 2007.