## Abstract and Applied Analysis

- Abstr. Appl. Anal.
- Volume 2013, Special Issue (2013), Article ID 659804, 7 pages.

### Inverse Coefficient Problem of the Parabolic Equation with Periodic Boundary and Integral Overdetermination Conditions

#### Abstract

This paper investigates the inverse problem of finding a time-dependent diffusion coefficient in a parabolic equation with the periodic boundary and integral overdetermination conditions. Under some assumption on the data, the existence, uniqueness, and continuous dependence on the data of the solution are shown by using the generalized Fourier method. The accuracy and computational efficiency of the proposed method are verified with the help of the numerical examples.

#### Article information

**Source**

Abstr. Appl. Anal., Volume 2013, Special Issue (2013), Article ID 659804, 7 pages.

**Dates**

First available in Project Euclid: 26 February 2014

**Permanent link to this document**

https://projecteuclid.org/euclid.aaa/1393449749

**Digital Object Identifier**

doi:10.1155/2013/659804

**Mathematical Reviews number (MathSciNet)**

MR3108485

**Zentralblatt MATH identifier**

1292.35328

#### Citation

Kanca, Fatma. Inverse Coefficient Problem of the Parabolic Equation with Periodic Boundary and Integral Overdetermination Conditions. Abstr. Appl. Anal. 2013, Special Issue (2013), Article ID 659804, 7 pages. doi:10.1155/2013/659804. https://projecteuclid.org/euclid.aaa/1393449749