Abstract and Applied Analysis

Inverse Coefficient Problem of the Parabolic Equation with Periodic Boundary and Integral Overdetermination Conditions

Fatma Kanca

Full-text: Open access

Abstract

This paper investigates the inverse problem of finding a time-dependent diffusion coefficient in a parabolic equation with the periodic boundary and integral overdetermination conditions. Under some assumption on the data, the existence, uniqueness, and continuous dependence on the data of the solution are shown by using the generalized Fourier method. The accuracy and computational efficiency of the proposed method are verified with the help of the numerical examples.

Article information

Source
Abstr. Appl. Anal., Volume 2013, Special Issue (2013), Article ID 659804, 7 pages.

Dates
First available in Project Euclid: 26 February 2014

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1393449749

Digital Object Identifier
doi:10.1155/2013/659804

Mathematical Reviews number (MathSciNet)
MR3108485

Zentralblatt MATH identifier
1292.35328

Citation

Kanca, Fatma. Inverse Coefficient Problem of the Parabolic Equation with Periodic Boundary and Integral Overdetermination Conditions. Abstr. Appl. Anal. 2013, Special Issue (2013), Article ID 659804, 7 pages. doi:10.1155/2013/659804. https://projecteuclid.org/euclid.aaa/1393449749


Export citation

References

  • J. R. Cannon, Y. P. Lin, and S. Wang, “Determination of a control parameter in a parabolic partial differential equation,” The Journal of the Australian Mathematical Society B, vol. 33, no. 2, pp. 149–163, 1991.
  • J. R. Cannon, Y. Lin, and S. Wang, “Determination of source parameter in parabolic equations,” Meccanica, vol. 27, no. 2, pp. 85–94, 1992.
  • A. G. Fatullayev, N. Gasilov, and I. Yusubov, “Simultaneous determination of unknown coefficients in a parabolic equation,” Applicable Analysis, vol. 87, no. 10-11, pp. 1167–1177, 2008.
  • M. I. Ivanchov, “Inverse problems for the heat-conduction equation with nonlocal boundary condition,” Ukrainian Mathematical Journal, vol. 45, no. 8, pp. 1186–1192, 1993.
  • M. I. Ivanchov and N. V. Pabyrivska, “Simultaneous determination of two coefficients in a parabolic equation in the case of nonlocal and integral conditions,” Ukrainian Mathematical Journal, vol. 53, no. 5, pp. 674–684, 2001.
  • M. I. Ismailov and F. Kanca, “An inverse coefficient problem for a parabolic equation in the case of nonlocal boundary and overdetermination conditions,” Mathematical Methods in the Applied Sciences, vol. 34, no. 6, pp. 692–702, 2011.
  • F. Kanca and M. I. Ismailov, “The inverse problem of finding the time-dependent diffusion coefficient of the heat equation from integral overdetermination data,” Inverse Problems in Science and Engineering, vol. 20, no. 4, pp. 463–476, 2012.
  • J. R. Cannon, “The solution of the heat equation subject to the specification of energy,” Quarterly of Applied Mathematics, vol. 21, pp. 155–160, 1963.
  • L. I. Kamynin, “A boundary value problem in the theory of heat conduction with a nonclassical boundary condition,” Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, vol. 4, no. 6, pp. 1006–1024, 1964.
  • N. I. Ionkin, “Solution of a boundary-value problem in heat conduction with a nonclassical boundary condition,” Differential Equations, vol. 13, pp. 204–211, 1977.
  • N. I. Yurchuk, “Mixed problem with an integral condition for certain parabolic equations,” Differential Equations, vol. 22, pp. 1457–1463, 1986.
  • V. M. Vīgak, “Construction of a solution of the heat conduction problem with integral conditions,” Doklady Akademii Nauk Ukrainy, vol. 8, pp. 57–60, 1994.
  • N. I. Ivanchov, “Boundary value problems for a parabolic equation with integral conditions,” Differential Equations, vol. 40, no. 4, pp. 591–609, 2004.
  • W. Liao, M. Dehghan, and A. Mohebbi, “Direct numerical method for an inverse problem of a parabolic partial differential equation,” Journal of Computational and Applied Mathematics, vol. 232, no. 2, pp. 351–360, 2009.
  • I. Sakinc, “Numerical solution of a quasilinear parabolic problem with periodic boundary condition,” Hacettepe Journal of Mathematics and Statistics, vol. 39, no. 2, pp. 183–189, 2010.
  • J. Choi, “Inverse problem for a parabolic equation with space-periodic boundary conditions by a Carleman estimate,” Journal of Inverse and Ill-Posed Problems, vol. 11, no. 2, pp. 111–135, 2003.