Abstract and Applied Analysis

Almost Automorphic Solutions to Nonautonomous Stochastic Functional Integrodifferential Equations

Li Xi-liang and Han Yu-liang

Full-text: Open access

Abstract

This paper concerns the square-mean almost automorphic solutions to a class of abstract semilinear nonautonomous functional integrodifferential stochastic evolution equations in real separable Hilbert spaces. Using the so-called “Acquistapace-Terreni” conditions and Banach contraction principle, the existence, uniqueness, and asymptotical stability results of square-mean almost automorphic mild solutions to such stochastic equations are established. As an application, square-mean almost automorphic solution to a concrete nonautonomous integro-differential stochastic evolution equation is analyzed to illustrate our abstract results.

Article information

Source
Abstr. Appl. Anal., Volume 2013, Special Issue (2013), Article ID 473969, 13 pages.

Dates
First available in Project Euclid: 26 February 2014

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1393449441

Digital Object Identifier
doi:10.1155/2013/473969

Mathematical Reviews number (MathSciNet)
MR3045067

Zentralblatt MATH identifier
1275.45007

Citation

Xi-liang, Li; Yu-liang, Han. Almost Automorphic Solutions to Nonautonomous Stochastic Functional Integrodifferential Equations. Abstr. Appl. Anal. 2013, Special Issue (2013), Article ID 473969, 13 pages. doi:10.1155/2013/473969. https://projecteuclid.org/euclid.aaa/1393449441


Export citation