Abstract and Applied Analysis

Computing Hypercrossed Complex Pairings in Digital Images

Simge Öztunç, Ali Mutlu, and Necdet Bildik

Full-text: Open access

Abstract

We consider an additive group structure in digital images and introduce the commutator in digital images. Then we calculate the hypercrossed complex pairings which generates a normal subgroup in dimension 2 and in dimension 3 by using 8-adjacency and 26-adjacency.

Article information

Source
Abstr. Appl. Anal., Volume 2013, Special Issue (2013), Article ID 675373, 6 pages.

Dates
First available in Project Euclid: 26 February 2014

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1393449423

Digital Object Identifier
doi:10.1155/2013/675373

Mathematical Reviews number (MathSciNet)
MR3147787

Zentralblatt MATH identifier
07095223

Citation

Öztunç, Simge; Mutlu, Ali; Bildik, Necdet. Computing Hypercrossed Complex Pairings in Digital Images. Abstr. Appl. Anal. 2013, Special Issue (2013), Article ID 675373, 6 pages. doi:10.1155/2013/675373. https://projecteuclid.org/euclid.aaa/1393449423


Export citation

References

  • L. Boxer, “Digitally continuous functions,” Pattern Recognition Letters, vol. 15, no. 8, pp. 833–839, 1994.
  • I. Karaca, L. Boxer, and A. Öztel, “Topological Invariants in digital images,” Journal of Mathematical Science, vol. 11, no. 2, pp. 109–140, 2011.
  • P. Carrasco and A. M. Cegarra, “Group-theoretic algebraic models for homotopy types,” Journal of Pure and Applied Algebra, vol. 75, no. 3, pp. 195–235, 1991.
  • A. Mutlu, Peiffer pairings in the moore complex of a simplicial group [Ph.D. thesis], University of Walles, Bangor, UK, 1997.
  • A. Mutlu and T. Porter, “Application of Peiffer pairings in the Moore complex of a simplicial Group,” Theory and Applications of Categories, vol. 4, no. 7, pp. 148–173, 1998. \endinput