Abstract and Applied Analysis

Stability and Hopf Bifurcation Analysis for a Gause-Type Predator-Prey System with Multiple Delays

Juan Liu, Changwei Sun, and Yimin Li

Full-text: Open access


This paper is concerned with a Gause-type predator-prey system with two delays. Firstly, we study the stability and the existence of Hopf bifurcation at the coexistence equilibrium by analyzing the distribution of the roots of the associated characteristic equation. A group of sufficient conditions for the existence of Hopf bifurcation is obtained. Secondly, an explicit formula for determining the stability and the direction of periodic solutions that bifurcate from Hopf bifurcation is derived by using the normal form theory and center manifold argument. Finally, some numerical simulations are carried out to illustrate the main theoretical results.

Article information

Abstr. Appl. Anal., Volume 2013, Special Issue (2013), Article ID 795358, 12 pages.

First available in Project Euclid: 26 February 2014

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier


Liu, Juan; Sun, Changwei; Li, Yimin. Stability and Hopf Bifurcation Analysis for a Gause-Type Predator-Prey System with Multiple Delays. Abstr. Appl. Anal. 2013, Special Issue (2013), Article ID 795358, 12 pages. doi:10.1155/2013/795358. https://projecteuclid.org/euclid.aaa/1393449402

Export citation


  • A. Klebanoff and A. Hastings, “Chaos in three-species food chains,” Journal of Mathematical Biology, vol. 32, no. 5, pp. 427–451, 1994.
  • M. C. Varriale and A. A. Gomes, “A study of a three species food chain,” Ecological Modelling, vol. 110, no. 2, pp. 119–133, 1998.
  • H. I. Freedman and P. Waltman, “Mathematical analysis of some three-species food-chain models,” Mathematical Biosciences, vol. 33, no. 3-4, pp. 257–276, 1977.
  • K. McCann and P. Yodzis, “Bifurcation structure of a 3-species food chain model,” Theoretical Population Biology, vol. 48, no. 2, pp. 93–125, 1995.
  • A. Hastings and T. Powell, “Chaos in three-species food chain,” Ecology, vol. 72, no. 3, pp. 896–903, 1991.
  • S. Guo and W. Jiang, “Global stability and Hopf bifurcation for Gause-type predator-prey system,” Journal of Applied Mathematics, vol. 2012, Article ID 260798, 17 pages, 2012.
  • S. Guo and W. Jiang, “Hopf bifurcation analysis on general Gause-type predator-prey models with delay,” Abstract and Applied Analysis, vol. 2012, Article ID 363051, 17 pages, 2012.
  • E. Beretta and Y. Kuang, “Geometric stability switch criteria in delay differential systems with delay dependent parameters,” SIAM Journal on Mathematical Analysis, vol. 33, no. 5, pp. 1144–1165, 2002.
  • N. H. Gazi and M. Bandyopadhyay, “Effect of time delay on a detritus-based ecosystem,” International Journal of Mathematics and Mathematical Sciences, vol. 2006, Article ID 25619, 28 pages, 2006.
  • Y. Xue and X. Wang, “Stability and local Hopf bifurcation for a predator-prey model with delay,” Discrete Dynamics in Nature and Society, vol. 2012, Article ID 252437, 17 pages, 2012.
  • Y. Bai and X. Zhang, “Stability and Hopf bifurcation in a diffusive predator-prey system with Beddington-DeAngelis functional response and time delay,” Abstract and Applied Analysis, vol. 2011, Article ID 463721, 22 pages, 2011.
  • J.-F. Zhang, “Bifurcation analysis of a modified Holling-Tanner predator-prey model with time delay,” Applied Mathematical Modelling, vol. 36, no. 3, pp. 1219–1231, 2012.
  • X. Li, S. Ruan, and J. Wei, “Stability and bifurcation in delay-differential equations with two delays,” Journal of Mathematical Analysis and Applications, vol. 236, no. 2, pp. 254–280, 1999.
  • Y. Song, M. Han, and Y. Peng, “Stability and Hopf bifurcations in a competitive Lotka-Volterra system with two delays,” Chaos, Solitons & Fractals, vol. 22, no. 5, pp. 1139–1148, 2004.
  • S. Gakkhar and A. Singh, “Complex dynamics in a prey predator system with multiple delays,” Communications in Nonlinear Science and Numerical Simulation, vol. 17, no. 2, pp. 914–929, 2012.
  • X.-Y. Meng, H.-F. Huo, X.-B. Zhang, and H. Xiang, “Stability and Hopf bifurcation in a three-species system with feedback delays,” Nonlinear Dynamics, vol. 64, no. 4, pp. 349–364, 2011.
  • B. D. Hassard, N. D. Kazarinoff, and Y. H. Wan, Theory and Applications of Hopf Bifurcation, Cambridge University Press, Cambridge, Mass, USA, 1981.
  • T. K. Kar and A. Ghorai, “Dynamic behaviour of a delayed predator-prey model with harvesting,” Applied Mathematics and Computation, vol. 217, no. 22, pp. 9085–9104, 2011.