Abstract and Applied Analysis

A Variational Approach to an Inhomogeneous Second-Order Ordinary Differential System

B. Muatjetjeja and C. M. Khalique

Full-text: Open access

Abstract

This paper studies the coupled inhomogeneous Lane-Emden system from the Lagrangian formulation point of view. The existence of multiple positive solutions has been discussed in the literature. Here we aim to classify the system with respect to a first-order Lagrangian according to the Noether point symmetries it admits. We then obtain first integrals of the various cases which admit Noether point symmetries.

Article information

Source
Abstr. Appl. Anal., Volume 2013, Special Issue (2013), Article ID 197219, 4 pages.

Dates
First available in Project Euclid: 26 February 2014

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1393444222

Digital Object Identifier
doi:10.1155/2013/197219

Mathematical Reviews number (MathSciNet)
MR3049364

Zentralblatt MATH identifier
1280.34001

Citation

Muatjetjeja, B.; Khalique, C. M. A Variational Approach to an Inhomogeneous Second-Order Ordinary Differential System. Abstr. Appl. Anal. 2013, Special Issue (2013), Article ID 197219, 4 pages. doi:10.1155/2013/197219. https://projecteuclid.org/euclid.aaa/1393444222


Export citation

References

  • H. Zou, “A priori estimates for a semilinear elliptic system without variational structure and their applications,” Mathematische Annalen, vol. 323, no. 4, pp. 713–735, 2002.
  • D. Qiuyi, “Entire positive solutions for inhomogeneous semilinear elliptic systems,” Glasgow Mathematical Journal, vol. 47, no. 1, pp. 97–114, 2005.
  • P. Clément, D. G. de Figueiredo, and E. Mitidieri, “Positive solutions of semilinear elliptic systems,” Communications in Partial Differential Equations, vol. 17, no. 5-6, pp. 923–940, 1992.
  • C. Cosner, “Positive solutions for superlinear elliptic systems without variational structure,” Nonlinear Analysis: Theory, Methods & Applications, vol. 8, no. 12, pp. 1427–1436, 1984.
  • D. G. de Figueiredo and P. L. Felmer, “A Liouville-type theorem for elliptic systems,” Annali della Scuola Normale Superiore di Pisa, vol. 21, no. 3, pp. 387–397, 1994.
  • E. Mitidieri, “A Rellich type identity and applications,” Communications in Partial Differential Equations, vol. 18, no. 1-2, pp. 125–151, 1993.
  • E. Mitidieri, “Non-existence of positive solutions of semilinear elliptic systems in Rn,” Differential and Integral Equations, vol. 9, pp. 456–479, 1996.
  • L. A. Peletier and R. C. A. M. van der Vorst, “Existence and nonexistence of positive solutions of nonlinear elliptic systems and the biharmonic equation,” Differential and Integral Equations, vol. 5, no. 4, pp. 747–767, 1992.
  • W. Reichel and H. Zou, “Non-existence results for semilinear cooperative elliptic systems via moving spheres,” Journal of Differential Equations, vol. 161, no. 1, pp. 219–243, 2000.
  • R. C. A. M. van der Vorst, “Variational identities and applications to differential systems,” Archive for Rational Mechanics and Analysis, vol. 116, no. 4, pp. 375–398, 1992.
  • P. Han and Z. Liu, “Multiple positive solutions of strongly indefinite systems with critical Sobolev exponents and data that change sign,” Nonlinear Analysis: Theory, Methods & Applications, vol. 58, no. 1-2, pp. 229–243, 2004.
  • D. Qiuyi and C. C. Tisdell, “Nondegeneracy of positive solutions to homogeneous second-order differential systems and its applications,” Acta Mathematica Scientia B, vol. 29, no. 2, pp. 435–446, 2009.
  • H. Goldstein, C. Poole, and J. Safko, Classical Mechanics, Pearson Education, Singapore, 3rd edition, 2004.
  • V. M. Gorringe and P. G. L. Leach, “Lie point symmetries for systems of second order linear ordinary differential equations,” Quaestiones Mathematicae, vol. 11, no. 1, pp. 95–117, 1988.
  • B. Muatjetjeja and C. M. Khalique, “First integrals for a generalized coupled Lane-Emden system,” Nonlinear Analysis: Real World Applications, vol. 12, no. 2, pp. 1202–1212, 2011.
  • B. van Brunt, The Calculus of Variations, Universitext, Springer, New York, NY, USA, 2004.
  • E. Noether, “Invariante Variationsprobleme, Königliche Gesellschaft der Wissenschaften Zu Göttingen, Nachrichten,” Mathematisch-Physikalische Klasse Heft, vol. 2, pp. 235–269, 1918.