Abstract and Applied Analysis

The Centroid of a Lie Triple Algebra

Xiaohong Liu and Liangyun Chen

Full-text: Open access

Abstract

General results on the centroids of Lie triple algebras are developed. Centroids of the tensor product of a Lie triple algebra and a unitary commutative associative algebra are studied. Furthermore, the centroid of the tensor product of a simple Lie triple algebra and a polynomial ring is completely determined.

Article information

Source
Abstr. Appl. Anal., Volume 2013, Special Issue (2013), Article ID 404219, 9 pages.

Dates
First available in Project Euclid: 26 February 2014

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1393444213

Digital Object Identifier
doi:10.1155/2013/404219

Mathematical Reviews number (MathSciNet)
MR3095361

Zentralblatt MATH identifier
1291.17003

Citation

Liu, Xiaohong; Chen, Liangyun. The Centroid of a Lie Triple Algebra. Abstr. Appl. Anal. 2013, Special Issue (2013), Article ID 404219, 9 pages. doi:10.1155/2013/404219. https://projecteuclid.org/euclid.aaa/1393444213


Export citation

References

  • M. Kikkawa, “Remarks on solvability of Lie triple algebras,” Memoirs of the Faculty of Literature and Science, Shimane University, vol. 13, pp. 17–22, 1979.
  • K. Yamaguti, “On the theory of Malcev algebras,” Kumamoto Journal of Science, vol. 6, pp. 9–45, 1963.
  • D. Gaparayi and A. N. Issa, “Hom-Lie-YamagutičommentComment on ref. [8?]: Please update the information of this reference, if possible. structures on Hom-Leibniz algebras,” http://arxiv.org/abs/1208.6038.
  • D. Gaparayi and A. N. Issa, “A twisted generalization of Lie-Yamaguti algebras,” International Journal of Algebra, vol. 6, no. 7, pp. 339–352, 2012.
  • P. Benito, A. Elduque, and F. Martín-Herce, “Irreducible Lie-Yamaguti algebras,” Journal of Pure and Applied Algebra, vol. 213, no. 5, pp. 795–808, 2009.
  • A. N. Issa, “Remarks on the construction of Lie-Yamaguti algebras form Leibniz algebras,” International Journal of Algebra, vol. 5, no. 14, pp. 667–677, 2011.
  • W. G. Lister, “A structure theory of Lie triple systems,” Transactions of the American Mathematical Society, vol. 72, pp. 217–242, 1952.
  • G. Benkart and E. Neher, “The centroid of extended affine and root graded Lie algebras,” Journal of Pure and Applied Algebra, vol. 205, no. 1, pp. 117–145, 2006.
  • D. J. Melville, “Centroids of nilpotent Lie algebras,” Communications in Algebra, vol. 20, no. 12, pp. 3649–3682, 1992.
  • P. Benito, C. Draper, and A. Elduque, “On some algebras related to simple Lie triple systems,” Journal of Algebra, vol. 219, no. 1, pp. 234–254, 1999.
  • J. Lie and Y. Wang, “Centroid of Lie triple systems,” Acta Scientiarum Naturalium Universitatis Nankaiensis (Science Edition), pp. 98–104, 2010.
  • R. Bai, H. An, and Z. Li, “Centroid structures of $n$-Lie algebras,” Linear Algebra and Its Applications, vol. 430, no. 1, pp. 229–240, 2009.