Abstract and Applied Analysis

Fixed Point Results for α - ψ λ -Contractions on Gauge Spaces and Applications

Mohamed Jleli, Erdal Karapınar, and Bessem Samet

Full-text: Open access

Abstract

We extend the concept of α-ψ-contractive mappings introduced recently by Samet et al. (2012) to the setting of gauge spaces. New fixed point results are established on such spaces, and some applications to nonlinear integral equations on the half-line are presented.

Article information

Source
Abstr. Appl. Anal., Volume 2013, Special Issue (2013), Article ID 730825, 7 pages.

Dates
First available in Project Euclid: 26 February 2014

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1393443602

Digital Object Identifier
doi:10.1155/2013/730825

Mathematical Reviews number (MathSciNet)
MR3108480

Zentralblatt MATH identifier
07095293

Citation

Jleli, Mohamed; Karapınar, Erdal; Samet, Bessem. Fixed Point Results for $\alpha $ - ${\psi }_{\lambda }$ -Contractions on Gauge Spaces and Applications. Abstr. Appl. Anal. 2013, Special Issue (2013), Article ID 730825, 7 pages. doi:10.1155/2013/730825. https://projecteuclid.org/euclid.aaa/1393443602


Export citation

References

  • S. Banach, “Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales,” Fundamenta Mathematicae, vol. 3, pp. 133–181, 1922.
  • M. Edelstein, “An extension of Banach's contraction principle,” Proceedings of the American Mathematical Society, vol. 12, pp. 7–10, 1961.
  • W. A. Kirk, P. S. Srinivasan, and P. Veeramani, “Fixed points for mappings satisfying cyclical contractive conditions,” Fixed Point Theory, vol. 4, no. 1, pp. 79–89, 2003.
  • A. C. M. Ran and M. C. B. Reurings, “A fixed point theorem in partially ordered sets and some applications to matrix equations,” Proceedings of the American Mathematical Society, vol. 132, no. 5, pp. 1435–1443, 2004.
  • R. P. Agarwal, M. A. El-Gebeily, and D. O'Regan, “Generalized contractions in partially ordered metric spaces,” Applicable Analysis, vol. 87, no. 1, pp. 109–116, 2008.
  • T. Gnana Bhaskar and V. Lakshmikantham, “Fixed point theorems in partially ordered metric spaces and applications,” Nonlinear Analysis. Theory, Methods & Applications, vol. 65, no. 7, pp. 1379–1393, 2006.
  • J. Harjani and K. Sadarangani, “Fixed point theorems for weakly contractive mappings in partially ordered sets,” Nonlinear Analysis. Theory, Methods & Applications, vol. 71, no. 7-8, pp. 3403–3410, 2009.
  • J. J. Nieto and R. Rodríguez-López, “Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations,” Acta Mathematica Sinica, vol. 23, no. 12, pp. 2205–2212, 2007.
  • A. Petruşel and I. A. Rus, “Fixed point theorems in ordered $L$-spaces,” Proceedings of the American Mathematical Society, vol. 134, no. 2, pp. 411–418, 2006.
  • P. Salimi, C. Vetro, and P. Vetro, “Fixed point theorems for twisted (alpha, beta)-psi-contractive type mappings and applications,” Filomat, vol. 27, no. 4, pp. 605–615, 2013.
  • P. Salimi, C. Vetro, and P. Vetro, “Some new fixed point results in non-archimedean fuzzy metric spaces,” Nonlinear Analysis. Modelling and Control, vol. 18, no. 3, pp. 344–358, 2013.
  • B. Samet, C. Vetro, and P. Vetro, “Fixed point theorems for $\alpha $-$\psi $-contractive type mappings,” Nonlinear Analysis. Theory, Methods & Applications, vol. 75, no. 4, pp. 2154–2165, 2012.
  • P. Amiri, S. Rezapour, and N. Shahzad, “Fixed points of generalized $\alpha $-$\psi $-contractions,” Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales, vol. 105, no. 1, 2011.
  • J. H. Asl, S. Rezapour, and N. Shahzad, “On fixed points of $\alpha $-$\psi $-contractive multifunctions,” Fixed Point Theory and Applications, vol. 2012, article 212, 2012.
  • E. Karap\inar and B. Samet, “Generalized $\alpha $-$\psi $-contractive type mappings and related fixed point theorems with applications,” Abstract and Applied Analysis, vol. 2012, Article ID 793486, 17 pages, 2012.
  • P. Kumam, C. Vetro, and F. Vetro, “Fixed points for weak $\alpha $-$\psi $-contractions in partial metric spaces,” Abstract and Applied Analysis, vol. 2013, Article ID 986028, 9 pages, 2013.
  • J. Dugundji, Topology, Allyn and Bacon, Boston, Mass, USA, 1966.