Abstract and Applied Analysis

Approximate Controllability of Fractional Neutral Evolution Equations in Banach Spaces

N. I. Mahmudov

Full-text: Open access

Abstract

We discuss the approximate controllability of semilinear fractional neutral differential systems with infinite delay under the assumptions that the corresponding linear system is approximately controllable. Using Krasnoselkii's fixed-point theorem, fractional calculus, and methods of controllability theory, a new set of sufficient conditions for approximate controllability of fractional neutral differential equations with infinite delay are formulated and proved. The results of the paper are generalization and continuation of the recent results on this issue.

Article information

Source
Abstr. Appl. Anal., Volume 2013, Special Issue (2013), Article ID 531894, 11 pages.

Dates
First available in Project Euclid: 26 February 2014

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1393443492

Digital Object Identifier
doi:10.1155/2013/531894

Mathematical Reviews number (MathSciNet)
MR3044997

Zentralblatt MATH identifier
1271.93022

Citation

Mahmudov, N. I. Approximate Controllability of Fractional Neutral Evolution Equations in Banach Spaces. Abstr. Appl. Anal. 2013, Special Issue (2013), Article ID 531894, 11 pages. doi:10.1155/2013/531894. https://projecteuclid.org/euclid.aaa/1393443492


Export citation

References

  • S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach Science, Yverdon, Switzerland, 1993.
  • R. F. Curtain and H. J. Zwart, An Introduction to Infinite-Dimensional Linear Systems Theory, Springer, Berlin, Germany, 1995.
  • A. Debbouche and D. Baleanu, “Controllability of fractional evolution nonlocal impulsive quasilinear delay integro-differential systems,” Computers & Mathematics with Applications, vol. 62, no. 3, pp. 1442–1450, 2011.
  • K. Balachandran and J. P. Dauer, “Controllability of nonlinear systems in Banach spaces: a survey,” Journal of Optimization Theory and Applications, vol. 115, no. 1, pp. 7–28, 2002.
  • A. E. Bashirov and N. I. Mahmudov, “On concepts of controllability for deterministic and stochastic systems,” SIAM Journal on Control and Optimization, vol. 37, no. 6, pp. 1808–1821, 1999.
  • M. Benchohra, L. Górniewicz, and S. K. Ntouyas, Controllability of Some Nonlinear Systems in Banach Spaces: The Fixed Point Theory Approach, Pawel Wlodkowicz University College, Plock, Poland, 2003.
  • N. Carmichael and M. D. Quinn, “Fixed point methods in nonlinear control,” in Distributed Parameter Systems (Vorau, 1984), vol. 75 of Lecture Notes in Control and Information Sciences, pp. 24–51, Springer, Berlin, Germany, 1985.
  • D. N. Chalishajar, “Controllability of second order impulsive neutral functional differential inclusions with infinite delay,” Journal of Optimization Theory and Applications, vol. 154, no. 2, pp. 672–684, 2012.
  • D. N. Chalishajar and F. S. Acharya, “Controllability of second order semi-linear neutral impulsive differential inclusions on unbounded domain with infinite delay in Banach spaces,” Bulletin of the Korean Mathematical Society, vol. 48, no. 4, pp. 813–838, 2011.
  • X. J. Li and J. M. Yong, Optimal Control Theory for Infinite-Dimensional Systems, Systems & Control: Foundations & Applications, Birkhäuser Boston Publishers, Boston, Mass, USA, 1995.
  • N. I. Mahmudov, “Approximate controllability of semilinear deterministic and stochastic evolution equations in abstract spaces,” SIAM Journal on Control and Optimization, vol. 42, no. 5, pp. 1604–1622, 2003.
  • J. P. Dauer and N. I. Mahmudov, “Approximate controllability of semilinear functional equations in Hilbert spaces,” Journal of Mathematical Analysis and Applications, vol. 273, no. 2, pp. 310–327, 2002.
  • J. Klamka, “Local controllability of fractional discrete-time semilinear systems,” Acta Mechanica et Automatica, vol. 15, pp. 55–58, 2011.
  • S. Kumar and N. Sukavanam, “Approximate controllability of fractional order semilinear systems with bounded delay,” Journal of Differential Equations, vol. 252, no. 11, pp. 6163–6174, 2012.
  • N. I. Mahmudov, “Approximate controllability of evolution systems with nonlocal conditions,” Nonlinear Analysis. Theory, Methods & Applications, vol. 68, no. 3, pp. 536–546, 2008.
  • V. Obukhovskiĭ and P. Rubbioni, “On a controllability problem for systems governed by semilinear functional differential inclusions in Banach spaces,” Topological Methods in Nonlinear Analysis, vol. 15, no. 1, pp. 141–151, 2000.
  • V. Obukhovski and P. Zecca, “Controllability for systems governed by semilinear differential inclusions in a Banach space with a noncompact semigroup,” Nonlinear Analysis. Theory, Methods & Applications, vol. 70, no. 9, pp. 3424–3436, 2009.
  • R. Sakthivel, J. J. Nieto, and N. I. Mahmudov, “Approximate controllability of nonlinear deterministic and stochastic systems with unbounded delay,” Taiwanese Journal of Mathematics, vol. 14, no. 5, pp. 1777–1797, 2010.
  • R. Sakthivel, N. I. Mahmudov, and Juan. J. Nieto, “Controllability for a class of fractional-order neutral evolution control systems,” Applied Mathematics and Computation, vol. 218, no. 20, pp. 10334–10340, 2012.
  • R. Sakthivel and Y. Ren, “Approximate controllability of fractional differential equations with state-dependent delay,” Results in Mathematics, 2012.
  • R. Sakthivel, Y. Ren, and N. I. Mahmudov, “On the approximate controllability of semilinear fractional differential systems,” Computers & Mathematics with Applications, vol. 62, no. 3, pp. 1451–1459, 2011.
  • Y. Ren, L. Hu, and R. Sakthivel, “Controllability of impulsive neutral stochastic functional differential inclusions with infinite delay,” Journal of Computational and Applied Mathematics, vol. 235, no. 8, pp. 2603–2614, 2011.
  • R. Sakthivel, S. Suganya, and S. M. Anthoni, “Approximate controllability of fractional stochastic evolution equations,” Computers & Mathematics with Applications, vol. 63, no. 3, pp. 660–668, 2012.
  • R. Sakthivel and Y. Ren, “Complete controllability of stochastic evolution equations with jumps,” Reports on Mathematical Physics, vol. 68, no. 2, pp. 163–174, 2011.
  • R. Sakthivel, N. I. Mahmudov, and J. H. Kim, “On controllability of second order nonlinear impulsive differential systems,” Nonlinear Analysis. Theory, Methods & Applications, vol. 71, no. 1-2, pp. 45–52, 2009.
  • R. Sakthivel, “Controllability of nonlinear impulsive Ito type stochastic systems,” International Journal of Applied Mathematics and Computer Science, vol. 19, no. 4, pp. 589–595, 2009.
  • N. Sukavanam and S. Kumar, “Approximate controllability of fractional order semilinear delay systems,” Journal of Optimization Theory and Applications, vol. 151, no. 2, pp. 373–384, 2011.
  • Z. Yan, “Approximate controllability of partial neutral functional differential systems of fractional order with state-dependent delay,” International Journal of Control, vol. 85, no. 8, pp. 1051–1062, 2012.
  • J. Wang and Y. Zhou, “Complete controllability of fractional evolution systems,” Communications in Nonlinear Science and Numerical Simulation, vol. 17, no. 11, pp. 4346–4355, 2012.
  • J. Wang, Z. Fan, and Y. Zhou, “Nonlocal controllability of semilinear dynamic systems with fractional derivative in Banach spaces,” Journal of Optimization Theory and Applications, vol. 154, no. 1, pp. 292–302, 2012.
  • A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, vol. 44 of Applied Mathematical Sciences, Springer, New York, NY, USA, 1983.
  • Y. Zhou and F. Jiao, “Existence of mild solutions for fractional neutral evolution equations,” Computers & Mathematics with Applications, vol. 59, no. 3, pp. 1063–1077, 2010.
  • Y. Zhou and F. Jiao, “Nonlocal Cauchy problem for fractional evolution equations,” Nonlinear Analysis. Real World Applications, vol. 11, no. 5, pp. 4465–4475, 2010.
  • J. Wang and Y. Zhou, “A class of fractional evolution equations and optimal controls,” Nonlinear Analysis. Real World Applications, vol. 12, no. 1, pp. 262–272, 2011.