Abstract and Applied Analysis

Existence Solutions of Vector Equilibrium Problems and Fixed Point of Multivalued Mappings

Kanokwan Sitthithakerngkiet and Somyot Plubtieng

Full-text: Open access

Abstract

Let K be a nonempty compact convex subset of a topological vector space. In this paper-sufficient conditions are given for the existence of x K such that F ( T ) V E P ( F ) , where F ( T ) is the set of all fixed points of the multivalued mapping T and VEP ( F ) is the set of all solutions for vector equilibrium problem of the vector-valued mapping F . This leads us to generalize and improve some existence results in the recent references.

Article information

Source
Abstr. Appl. Anal., Volume 2013, Special Issue (2012), Article ID 952021, 6 pages.

Dates
First available in Project Euclid: 26 February 2014

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1393442755

Digital Object Identifier
doi:10.1155/2013/952021

Mathematical Reviews number (MathSciNet)
MR3034898

Zentralblatt MATH identifier
1262.47080

Citation

Sitthithakerngkiet, Kanokwan; Plubtieng, Somyot. Existence Solutions of Vector Equilibrium Problems and Fixed Point of Multivalued Mappings. Abstr. Appl. Anal. 2013, Special Issue (2012), Article ID 952021, 6 pages. doi:10.1155/2013/952021. https://projecteuclid.org/euclid.aaa/1393442755


Export citation

References

  • J. von Neumann, “Über ein ökonomisches Gleichungssystem und eine Verallgemeinerung des Brouwerschen Fixpunktsatzes,” Ergebnisse eines Mathematischen Kolloquiums, vol. 8, pp. 73–83, 1937.
  • F. E. Browder, “The fixed point theory of multi-valued mappings in topological vector spaces,” Mathematische Annalen, vol. 177, pp. 283–301, 1968.
  • K. Fan, “Fixed-point and minimax theorems in locally convex topological linear spaces,” Proceedings of the National Academy of Sciences of the United States of America, vol. 38, pp. 121–126, 1952.
  • S. Kakutani, “A generalization of Brouwer's fixed point theorem,” Duke Mathematical Journal, vol. 8, pp. 457–459, 1941.
  • W. S. Du, “New cone fixed point theorems for nonlinear multi-valued maps with their applications,” Applied Mathematics Letters, vol. 24, no. 2, pp. 172–178, 2011.
  • N. Hussain and M. A. Khamsi, “On asymptotic pointwise contractions in metric spaces,” Nonlinear Analysis: Theory, Methods & Applications, vol. 71, no. 10, pp. 4423–4429, 2009.
  • D. Klim and D. Wardowski, “Fixed point theorems for set-valued contractions in complete metric spaces,” Journal of Mathematical Analysis and Applications, vol. 334, no. 1, pp. 132–139, 2007.
  • A. Latif and A. A. N. Abdou, “Fixed points of generalized contractive maps,” Fixed Point Theory and Applications, vol. 2009, Article ID 487161, 9 pages, 2009.
  • T.-C. Lim, “A fixed point theorem for weakly inward multivalued contractions,” Journal of Mathematical Analysis and Applications, vol. 247, no. 1, pp. 323–327, 2000.
  • J. S. Ume, B. S. Lee, and S. J. Cho, “Some results on fixed point theorems for multivalued mappings in complete metric spaces,” International Journal of Mathematics and Mathematical Sciences, vol. 30, no. 6, pp. 319–325, 2002.
  • E. Blum and W. Oettli, “From optimization and variational inequalities to equilibrium problems,” The Mathematics Student, vol. 63, no. 1–4, pp. 123–145, 1994.
  • M. A. Noor and W. Oettli, “On general nonlinear complementarity problems and quasi-equilibria,” Le Matematiche, vol. 49, no. 2, pp. 313–331, 1994.
  • Q. H. Ansari, S. Al-Homidan, and J.-C. Yao, “Equilibrium problems and fixed point theory,” Fixed Point Theory and Applications, vol. 2012, article 25, 2012.
  • Y. P. Fang and N. J. Huang, “Strong vector variational inequalities in Banach spaces,” Applied Mathematics Letters, vol. 19, no. 4, pp. 362–368, 2006.
  • F. Giannessi, Vector Variational Inequalities and Vector Equilibria, Mathematical Theories, Kluwer Academic Publishers, Dodrecht, The Netherlands, 2000.
  • X. H. Gong, “Strong vector equilibrium problems,” Journal of Global Optimization, vol. 36, no. 3, pp. 339–349, 2006.
  • G. M. Lee, D. S. Kim, and H. Kuk, “Existence of solutions for vector optimization problems,” Journal of Mathematical Analysis and Applications, vol. 220, no. 1, pp. 90–98, 1998.
  • X. J. Long, N. J. Huang, and K. L. Teo, “Existence and stability of solutions for generalized strong vector quasi-equilibrium problem,” Mathematical and Computer Modelling, vol. 47, no. 3-4, pp. 445–451, 2008.
  • S. Plubtieng and K. Sitthithakerngkiet, “Existence result of generalized vector quasiequilibrium problems in locally $G$-convex spaces,” Fixed Point Theory and Applications, vol. 2011, Article ID 967515, 13 pages, 2011.
  • A. H. Wan, J. Y. Fu, and W. H. Mao, “On generalized vector equilibrium problems,” Acta Mathematicae Applicatae Sinica, vol. 22, no. 1, pp. 21–26, 2006.
  • Q. H. Ansari and F. Flores-Bazán, “Generalized vector quasi-equilibrium problems with applications,” Journal of Mathematical Analysis and Applications, vol. 277, no. 1, pp. 246–256, 2003.
  • Q. H. Ansari and J. C. Yao, “On vector quasi-equilibrium problems,” in Variational Problems and Equilibria, A. Maugeri and F. Giannessi, Eds., Kluwer Academic Publishers, Dodrecht, The Netherlands, 2003.
  • J. Y. Fu, “Stampacchia generalized vector quasiequilibrium problems and vector saddle points,” Journal of Optimization Theory and Applications, vol. 128, no. 3, pp. 605–619, 2006.
  • S. H. Hou, H. Yu, and G. Y. Chen, “On vector quasi-equilibrium problems with set-valued maps,” Journal of Optimization Theory and Applications, vol. 119, no. 3, pp. 485–498, 2003.
  • G. M. Lee, B. S. Lee, and S. S. Chang, “On vector quasivariational inequalities,” Journal of Mathematical Analysis and Applications, vol. 203, no. 3, pp. 626–638, 1996.
  • S. H. Wang, J. H. Xiong, and J. Y. Fu, “Stampacchia generalized vector quasi-equilibriums with monotonicity,” Journal of Nanchang University, vol. 30, pp. 114–117, 2006.
  • L.-J. Lin and S. Park, “On some generalized quasi-equilibrium problems,” Journal of Mathematical Analysis and Applications, vol. 224, no. 2, pp. 167–181, 1998.
  • K. R. Kazmi and S. A. Khan, “Existence of solutions to a generalized system,” Journal of Optimization Theory and Applications, vol. 142, no. 2, pp. 355–361, 2009.
  • X. Wu and S. Shen, “A further generalization of Yannelis-Prabhakar's continuous selection theorem and its applications,” Journal of Mathematical Analysis and Applications, vol. 197, no. 1, pp. 61–74, 1996.
  • X. P. Ding, “A coincidence theorem involving contractible spaces,” Applied Mathematics Letters, vol. 10, no. 3, pp. 53–56, 1997.
  • M. Balaj and S. Muresan, “Generalizations of the Fan-Browder fixed point theorem and minimax inequalities,” Archivum Mathematicum, vol. 41, no. 4, pp. 399–407, 2005.