Abstract and Applied Analysis

Mizoguchi-Takahashi’s Fixed Point Theorem with α , η Functions

Muhammad Usman Ali, Tayyab Kamran, Wutiphol Sintunavarat, and Phayap Katchang

Full-text: Open access

Abstract

We introduce the notion of generalized α * -admissible mappings. By using this notion, we prove a fixed point theorem. Our result generalizes Mizoguchi-Takahashi’s fixed point theorem. We also provide some examples to show the generality of our work.

Article information

Source
Abstr. Appl. Anal., Volume 2013, Special Issue (2013), Article ID 418798, 4 pages.

Dates
First available in Project Euclid: 26 February 2014

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1393442125

Digital Object Identifier
doi:10.1155/2013/418798

Mathematical Reviews number (MathSciNet)
MR3147833

Zentralblatt MATH identifier
1293.54016

Citation

Ali, Muhammad Usman; Kamran, Tayyab; Sintunavarat, Wutiphol; Katchang, Phayap. Mizoguchi-Takahashi’s Fixed Point Theorem with $\alpha $ , $\eta $ Functions. Abstr. Appl. Anal. 2013, Special Issue (2013), Article ID 418798, 4 pages. doi:10.1155/2013/418798. https://projecteuclid.org/euclid.aaa/1393442125


Export citation

References

  • S. B. Nadler Jr., “Multivalued contraction mappings,” Pacific Journal of Mathematics, vol. 30, pp. 475–488, 1969.
  • S. Reich, “Fixed points of contractive functions,” Bollettino della Unione Matematica Italiana, vol. 4, no. 5, pp. 26–42, 1972.
  • N. Mizoguchi and W. Takahashi, “Fixed point theorems for multivalued mappings on complete metric spaces,” Journal of Mathematical Analysis and Applications, vol. 141, no. 1, pp. 177–188, 1989.
  • P. Z. Daffer and H. Kaneko, “Fixed points of generalized contractive multi-valued mappings,” Journal of Mathematical Analysis and Applications, vol. 192, no. 2, pp. 655–666, 1995.
  • T. H. Chang, “Common fixed point theorems for multi-valued mappings,” Mathematica Japonica, vol. 41, pp. 311–320, 1995.
  • A. A. Eldred, J. Anuradha, and P. Veeramani, “On equivalence of generalized multi-valued contractions and Nadler's fixed point theorem,” Journal of Mathematical Analysis and Applications, vol. 336, no. 2, pp. 751–757, 2007.
  • T. Suzuki, “Mizoguchi-Takahashi's fixed point theorem is a real generalization of Nadler's,” Journal of Mathematical Analysis and Applications, vol. 340, no. 1, pp. 752–755, 2007.
  • T. Kamran, “Mizoguchi-Takahashi's type fixed point theorem,” Computers and Mathematics with Applications, vol. 57, no. 3, pp. 507–511, 2009.
  • T. Kamran and Q. Kiran, “Fixed point theorems for multi-valued mappings obtained by altering distances,” Mathematical and Computer Modelling, vol. 54, no. 11-12, pp. 2772–2777, 2011.
  • M. U. Ali, “Mizoguchi-Takahashi's type common fixed point čommentComment on ref. [10?]: Please update the information of this reference, if possible.theorem,” Journal of the Egyptian Mathematical Society. In press.
  • W. Sintunavarat and P. Kumam, “Weak condition for generalized multi-valued (f, $\alpha $, $\beta $)-weak contraction mappings,” Applied Mathematics Letters, vol. 24, no. 4, pp. 460–465, 2011.
  • W. Sintunavarat and P. Kumam, “Common fixed point theorem for hybrid generalized multi-valued contraction mappings,” Applied Mathematics Letters, vol. 25, no. 1, pp. 52–57, 2012.
  • W. Sintunavarat and P. Kumam, “Common fixed point theorem for cyclic generalized multi-valued contraction mappings,” Applied Mathematics Letters, vol. 25, no. 11, pp. 1849–1855, 2012.
  • P. Kumam, H. Aydi, E. Karapinar, and W. Sintunavarat, “Best proximity points and extension of Mizoguchi-Takahashi's fixed point theorems,” Fixed Point Theory and Applications, vol. 2013, article 242, 2013.
  • B. Samet, C. Vetro, and P. Vetro, “Fixed point theorems for $\alpha $-$\psi $-contractive type mappings,” Nonlinear Analysis: Theory, Methods and Applications, vol. 75, no. 4, pp. 2154–2165, 2012.
  • E. Karapinar and B. Samet, “Generalized $\alpha $-$\psi $-contractive type mappings and related fixed point theorems with applications,” Abstract and Applied Analysis, vol. 2012, Article ID 793486, 17 pages, 2012.
  • J. H. Asl, S. Rezapour, and N. Shahzad, “On fixed points of $\alpha $-$\psi $-contractive multifunctions,” Fixed Point Theory and Applications, vol. 2012, article 212, 2012.
  • B. Mohammadi, S. Rezapour, and N. Shahzad, “Some results on fixed points of $\alpha $-$\psi $-Ciric generalized multifunctions,” Fixed Point Theory and Applications, vol. 2013, article 24, 2013.
  • P. Amiri, S. Rezapour, and N. Shahzad, “Fixed points of generalized $\alpha $-$\psi $-contractions,” Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A, vol. 106, no. 2, pp. 287–297.
  • M. U. Ali and T. Kamran, “On ($\alpha ^{\ast\,\!}$, $\psi $)-contractive multi-valued mappings,” Fixed Point Theory and Applications, vol. 2013, article 137, 2013.
  • P. Salimi, A. Latif, and N. Hussain, “Modified $\alpha $-$\psi $-contractive mappings with applications,” Fixed Point Theory and Applications, vol. 2013, article 151, 2013.
  • N. Hussain, P. Salimi, and A. Latif, “Fixed point results for single and set-valued $\alpha $-$\eta $-$\psi $-contractive mappings,” Fixed Point Theory and Applications, vol. 2013, article 212, 2013. \endinput