Abstract and Applied Analysis

Growth of Meromorphic Solutions of Some q -Difference Equations

Guowei Zhang

Full-text: Open access

Abstract

We estimate the growth of the meromorphic solutions of some complex q -difference equations and investigate the convergence exponents of fixed points and zeros of the transcendental solutions of the second order q -difference equation. We also obtain a theorem about the q -difference equation mixing with difference.

Article information

Source
Abstr. Appl. Anal., Volume 2013 (2013), Article ID 943209, 6 pages.

Dates
First available in Project Euclid: 18 April 2013

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1366306773

Digital Object Identifier
doi:10.1155/2013/943209

Mathematical Reviews number (MathSciNet)
MR3035203

Zentralblatt MATH identifier
1266.39010

Citation

Zhang, Guowei. Growth of Meromorphic Solutions of Some $q$ -Difference Equations. Abstr. Appl. Anal. 2013 (2013), Article ID 943209, 6 pages. doi:10.1155/2013/943209. https://projecteuclid.org/euclid.aaa/1366306773


Export citation

References

  • W. K. Hayman, Meromorphic Functions, Oxford Mathematical Monographs, Clarendon Press, Oxford, UK, 1964.
  • L. Yang, Value Distribution Theory, Springer, Berlin, Germany, 1993.
  • C. C. Yang and H. X. Yi, Uniqueness Theory of Meromorphic Functions, Kluwer Academic, Beijing, China, 2003.
  • M. J. Ablowitz, R. G. Halburd, and B. Herbst, “On the extension of the Painlevé property to difference equations,” Nonlinearity, vol. 13, no. 3, pp. 889–905, 2000.
  • Z. X. Chen and K. H. Shon, “On zeros and fixed points of differences of meromorphic functions,” Journal of Mathematical Analysis and Applications, vol. 344, no. 1, pp. 373–383, 2008.
  • Z. X. Chen and K. H. Shon, “Value distribution of meromorphic solutions of certain difference Painlevé equations,” Journal of Mathematical Analysis and Applications, vol. 364, no. 2, pp. 556–566, 2010.
  • Y. M. Chiang and S. J. Feng, “On the Nevanlinna characteristic of $f(z+\eta )$ and difference equations in the complex plane,” Ramanujan Journal, vol. 16, no. 1, pp. 105–129, 2008.
  • R. G. Halburd and R. J. Korhonen, “Difference analogue of the lemma on the logarithmic derivative with applications to difference equations,” Journal of Mathematical Analysis and Applications, vol. 314, no. 2, pp. 477–487, 2006.
  • D. C. Barnett, R. G. Halburd, W. Morgan, and R. J. Korhonen, “Nevanlinna theory for the $q$-difference operator and meromorphic solutions of $q$-difference equations,” Proceedings of the Royal Society of Edinburgh A, vol. 137, no. 3, pp. 457–474, 2007.
  • W. Bergweiler, K. Ishizaki, and N. Yanagihara, “Meromorphic solutions of some functional equations,” Methods and Applications of Analysis, vol. 5, no. 3, pp. 248–258, 1998, correction: Methods and Applications of Analysis, vol. 6, no. 4, pp. 617–618, 1999.
  • W. Bergweiler and J. K. Langley, “Zeros of differences of meromorphic functions,” Mathematical Proceedings of the Cambridge Philosophical Society, vol. 142, no. 1, pp. 133–147, 2007.
  • G. G. Gundersen, J. Heittokangas, I. Laine, J. Rieppo, and D. Yang, “Meromorphic solutions of generalized Schröder equations,” Aequationes Mathematicae, vol. 63, no. 1-2, pp. 110–135, 2002.
  • I. Laine and C. C. Yang, “Clunie theorems for difference and $q$-difference polynomials,” Journal of the London Mathematical Society, vol. 76, no. 3, pp. 556–566, 2007.
  • X. M. Zheng and Z. X. Chen, “Some properties of meromorphic solutions of $q$-difference equations,” Journal of Mathematical Analysis and Applications, vol. 361, no. 2, pp. 472–480, 2010.
  • J. Heittokangas, R. Korhonen, I. Laine, J. Rieppo, and K. Tohge, “Complex difference equations of Malmquist type,” Computational Methods and Function Theory, vol. 1, no. 1, pp. 27–39, 2001.
  • I. Laine, Nevanlinna Theory and Complex Differential Equations, Walter de Gruyter, Berlin, Germany, 1993.